
www.manaraa.com

INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While 
the most advanced technological means to photograph and reproduce this document 
have been used, the quality is heavily dependent upon the quality of the original 
submitted.

The following explanation of techniques is provided to help you understand 
markings or patterns which may appear on this reproduction.

1.The sign or "target" for pages apparently lacking from the document 
photographed is "Missing Page(s)". If it was possible to obtain the missing 
page(s) or section, they are spliced into the film along with adjacent pages. 
This may have necessitated cutting thru an image and duplicating adjacent 
pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black mark, it 
is an indication that the photographer suspected that the copy may have 
moved during exposure and thus cause a blurred image. You will find a 
good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being 
photographed the photographer followed a definite method in 
"sectioning" the material. It is customary to begin photoing at the upper 
left hand corner of a large sheet and to continue photoing from left to 
right in equal sections with a small overlap. If necessary, sectioning is 
continued again — beginning below the first row and continuing on until 
complete.

4. The majority of users indicate that the textual content is of greatest value, 
however, a somewhat higher quality reproduction could be made from 
"photographs" if essential to the understanding of the dissertation. Silver 
prints of "photographs" may be ordered at additional charge by writing 
the Order Department, giving the catalog number, title, author and 
specific pages you wish reproduced.

5. PLEASE NOTE: Some pages may have indistinct print. Filmed as 
received.

University Microfilms International
300 North Zeeb Road
Ann Arbor, Michigan 48106 USA

St. John’s Road, Tyler's Green
High Wycombe, Bucks, England HP10 8HR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

7814437
GRXMLUNO, RICHARD ARNOLDA FRAMEWORK FOR THE INTEGRATION OF AUDITING EVIDENCE.

UNIVER8XTY OF WASHINGTON, PH.D., 1977

University
Micrailms

International 300 n  z e e b  r o a d ,  a n n  a r b o r ,  mi 48io6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

A Framework for the Integration of Auditing Evidence

Approved by_

by

Richard Arnold Grimlund

A dissertation submitted in partial fulfillment 

of the requirements for the degree of

Doctor of Philosophy

University of Washington 

1977

(Chairperson of Supervisory^Committee)

Program Authorized to
Offer Degree_ Business Administration

Date 28 November 1977

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

UNIVERSITY OF WASHINGTON

10 November 1977

We have carefully read the dissertation entiflerl A Framework for the Integration 
of Auditing Evidence

.submitted by
________________________ Richard Arnold Grimlund partia, fulfillment of
the requirements of the degree r»f Doctor of Philosophy________________________
and recommend its acceptance. In support of this recommendation we present the following 
joint statement of evaluation to be filed with the dissertation.

In recent years there has been a growing interest among auditors in the 
use of statistical methods for studying the reliability of a firm's fin­
ancial statements. Numerous methods are available to aid the auditor in 
examining individual account balances and the internal control systems 
that control a firm's accounting processes. However, using existing pro­
cedures it has not been possible to integrate the results of these isolated 
statistical measurements into consolidated measures of the reliability of 
either accounting balances or summary totals such as total current assets, 
total liabilities and total income.

This dissertation develops Bayesian mathematical procedures for construct­
ing such models using the prior judgments of an auditor, statistical 
sampling results and auxiliary accounting information available from the 
firm being audited. The procedures allow the auditor to integrate such 
evidence from several distinct internal control systems and account strata 
into a single probabilistic measure of the auditor's uncertainty in the 
total dollar error in a single account or group of accounts. The proce­
dures can be used with either a detailed decomposition of the processing 
steps of an internal control system or with a composite internal control 
system perspective.

These auditing capabilities are based in part upon several original mathe­
matical studies presented in the appendices of the dissertation. A theory 
has been constructed for approximating an unknown probability density func­
tion with a series expansion of Jacobi orthogonal polynomials. It is shown 
how the coefficients of sequential and Edgeworth forms of the expansion can 
be determined from known probability movements of the unknown probability 
density functions. In a separate study a Poisson-gamma model is developed 
for specifying a probability distribution-for the total error amount in a 
low error rate population. A joint probability density function of Bayesian 
natural conjugate form is developed in the course of this analysis for the 
skewness and scale parameters of the gamma distribution.

DISSERTATION READING COMMITTEE:
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The researcher has developed a conceptually sound study of the integration 
of auditing evidence. The motivation for and interest of the Certified 
Public Accounting profession in such procedures has been discussed in 
detail. An extensive literature review of the related auditing research 
has placed this study in clear perspective with respect to prior research.
A survey given in the appendix of many of the properties of an extended 
form of the beta probability distribution is of general mathematical inter­
est. The expositional form of the dissertation allows both mathematical 
and nonmathematical readers to study the analysis.

The research makes a worthwhile contribution to the theory of the integra­
tion of auditing evidence. The mathematical statistical theory developed 
is of general interest and of particular interest to those interested in 
the implications of uncertainty on aggregate summary measures.

DISSERTATION READING COMMITTEE:
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CHAPTER 1

AN OVERVIEW OF THE DISSERTATION

1.1 Preface

In recent years the accounting profession has seen a prolifer­

ation of auditing research concerned with the methods used by Certified 

Public Accountants in attesting to the reliability of financial statements. 

A similar research trend in financial accounting has focused on the impact 

of the information presented in these audited reports on financial markets. 

Both trends may be viewed as part of a growing concern of our society for 

the responsible utilization of those economic resources subject to major 

market imperfections.

While some audited financial statements were publically available 

before the S.E.C. Act of 1933, today’s audited financial statements repre­

sent a significant commitment to a service not allocated by market forces. 

Many free market imperfections can be envisioned to support our nation's 

regulatory posture towards financial statements. However, since our 

regulatory bodies and the supporting public accounting industry are not 

without their economic and policymaking imperfections, the implication for 

public policy of these free market imperfections is not clear.

It is hard to envision a good or service with as many free market 

imperfections as published accounting reports. Since the factor inputs 

necessary to produce a firm's accounting reports are generally controlled 

by one firm without government regulation monopoly conditions would pre­

vail. Further, since the marginal cost of producing an additional copy of
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a report is often declining (and nearly zero) without regulation a natural 

monopoly could exist.

Economic externalities and public good characteristics may also 

be associated with publically available accounting reports. Many of the 

hypothesized benefits of these published reports, such as providing infor­

mation for setting stock prices and the allocation of new investment 

capital, represent positive externalities of the use of the reports.

These externalities also lead to potential public good characteristics of 

accounting reports. Since the marginal cost of providing another indi­

vidual with the benefits of these hypothesized externalities is essen­

tially zero and it is also difficult to enforce property rights and 

exclude individuals from benefiting from such potential externalities, 

public good characteristics may arise from these externalities.

Finally, it is often hypothesized that through regulation the 

value of the reports can be enhanced. Thus, standardization and external 

auditing can affect the comparability and creditability of financial 

statements. Again there is a lack of excludability and essentially no 

marginal costs for supplying these benefits to another individual. Thus, 

standardization and external auditing may lead to public good character­

istics of accounting reports not possible in an unregulated environment.

There are two major orientations to recent academic research con­

cerned with the regulated public accounting industry. Financial ac­

counting research has tended to take a benefit perspective and focus on 

the above types of economic impacts of current and potential forms of 

published accounting reports. Information systems and auditing oriented 

research has tended to take a cost perspective and focus on the societal 

production process used to generate these audited accounting reports.
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3

This dissertation is concerned with one aspect of the auditor's 

involvement in this production process. Namely, how the information used 

by the auditors to attest to the reliability of account balances is col­

lected and consolidated. Analytical methods are developed for integrating 

the diverse sources of auditing evidence, pertaining to account balances, 

that arise in this review and testing phase of an audit. The collection 

and utilization of auditing evidence for possible footnote disclosures is 

not examined.

There are many factors that the auditor can consider in forming 

an assessment of the validity of a stated account balance. The general 

business setting of the firm and the associated economic pressures and 

risks are important subjective considerations. The auditor's preliminary 

examination of a client's information system, his formal review and 

testing of the client's internal control systems, and his substantive 

sample of an account provide a more structured basis for assessing the 

validity of an account balance. Also of interest to the auditor is the 

relationship found in a substantive sample between individual sample 

observations of an account and the corresponding elements of the client's 

records.

The presence in a firm of physically or logically distinct inter­

nal control systems can suggest a need for the auditor to stratify his 

evaluation process. Such distinct internal control systems (i.c.ss.)* 

may arise as a result of a divisional and/or subsidiary structure, or may 

be due to varying degrees of reliability of the firm's processing and

*The technical abbreviations, mathematical notation and numbering 
system used in this dissertation are defined in the first section of ap­
pendix 1.
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control systems. The resultant stratification motivates a need for con­

solidating the individual assessments of i.c.ss. and stratified accounts. 

Similar requirements can arise when the auditor wishes to combine his 

assessment of several accounts in order to develop an aggregate total 

such as total current assets or net income.

Mathematical methods are developed in the dissertation for consol­

idating these diverse sources of evidence. These methods allow the 

auditor to develop an "evidential integration" model of his uncertainty 

about a firm's account balances. More specifically, the dissertation is 

concerned with how the components to the auditor's evaluation of a firm's 

accounting system might be structured, and how this structure can be con­

solidated into summary measures of account balance errors. The vehicles 

for this endeavor are probability density functions (p.d.fs.) for error 

rates, for sizes of identified errors and for the total error in one or 

more accounts. The dissertation is thus concerned with how the latter 

p.d.f. can be determined from the former p.d.fs.

The dissertation's evidential integration focus leads to the fol­

lowing fundamental research question:

Can increased levels of auditing efficiency and confidence be 
achieved by analytically consolidating into summary measures 
the diverse sources of auditing evidence contributed by the 
auditor's formal review and testing of control systems and 
accounts?

This question does not focus on specific research. The question serves 

as a research goal toward which more specific inquiries can contribute.

In asking the question "Why evidential integration?" chapter 2 

suggests an affirmative answer to this fundamental or primary research 

question. The discussion of this chapter proceeds with an analysis of 

the current judgmental process of interpreting statistical sampling
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evidence. The more formal procedures of an evidential integration model 

are then shown to suggest a step toward a more objective and relevant uti­

lization of the auditor's informed judgment.

There are two secondary research questions that logically follow 

from the primary question. First, the analytical question of "How can 

one structure such an evidential integration process?" Second, the sub­

sequent empirical question of "How useful (in the primary question's 

sense) is the resulting structure?"

The dissertation concentrates on the first of these secondary 

questions. Again there are two complementary aspects to this research 

question. First, the behavioral question of "How can the auditor's in­

formed judgment be quantified?" and second, the analytical question of 

"How can a quantified form of the auditor's judgment be analytically com­

bined with additional sources of evidential information?"

This second question is the focus of the dissertation. It is 

shown how such diverse information can be analytically combined into a 

usable model.* Without the availability of such a model building 

capacity there has been only limited motivation for perfecting the judg­

mental assessment methods of the first question. It is hoped that this 

dissertation will motivate subsequent behavior research to define and 

test in the auditing environment such judgmental assessment methods 

(e.g., Felix 1976).

Such behavioral research will be necessary before this disserta­

tion's evidential integration model can be field tested. While there is

*A case study analysis in chapter 7 illustrates this process. 
Readers not familiar with the auditing process may find the initial devel­
opment of the case presented in sections 7.1 and 7.2 helpful in gaining a 
greater appreciation for the types of problems that motivate this research.
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a vast literature in this area, there are still many unanswered questions. 

Of particular interest to this dissertation are questions related to the 

assessment of skewed probability judgments and the statistical correlation 

that may exist between individually assessed random variables. The 

typical use of an audit team with at least one senior CPA and several 

junior auditors raises additional issues related to group versus indi­

vidual assessment performance.*

1.2 The Auditor’s Use of an Evi­
dential Integration Model

The goal of the dissertation is to demonstrate how a linkage can 

be developed between audit evidence and its implications on account 

balances. When these procedural tools are applied to a specific audit 

environment, the resulting evidential integration model can be used to 

explore the logical implications of the decision maker's judgment and the 

available statistical evidence. The procedures used in developing such a 

model build upon numerous Bayesian prior to posterior analyses of indi­

vidual components of the audit environment. A complete model brings 

these components together, and acts as a linkage between input judgments 

and the final implications on account balances.

More specifically, an evidential integration model provides a 

linkage between the auditor's judgments about internal control system 

(i.e.s.) errors and the implied net error in an account or series of

*An extensive review by Hogarth (1975) is a useful starting point 
for investigating such issues. The accompanying comments and further 
references by Winkler and by Edwards should not be overlooked. A more 
specific review of research pertaining to assessment methods is given by 
Chesley (1975). Hogarth has discussed all the major investigations of 
subjective probability and cites a number of earlier reviews and antholo­
gies. Chesley has more specific accounting objectives and reviews in 
greater depth a number of measurement methods.
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accounts. This process involves a logical analysis of the auditor's un­

certainty in his judgment about specific error rates and/or error sizes* 

in light of sampling evidence, the client's stated account values, and 

special partitions of accounts and i.c.ss. suggested by the evidential 

review process.

While this formal analysis may seem strange to the auditor, the 

underlying notion is not new to the auditor. A series of searching, 

self-examining questions is a critical aspect of an audit engagement.

The decision maker must question the accuracy of his judgment, and ponder 

the implications of deviations in his judgment from the unknown truth.

In essence every audit engagement is a research project to which 

judgment, logic, statistical methods and electro-mechanical aids are ap­

plied. An evidential integration model draws upon the latter two tools 

in order to strengthen the logical basis of the research project. The 

astuteness and creditability of the auditor's judgment is enhanced when 

he can explore and objectively document the logical implications of his 

judgment. Without such methods the auditor may fail to fully capitalize 

on his judgmental review of the firm's processing and control environment. 

The resulting overemphasis on statistical sampling can be a source of 

economic inefficiency to the ultimate consumers of the firm's goods and 

services. Further, any procedure that increases the creditability of the 

auditor's attestment could possibly affect the investment risk premium 

that these same consumers ultimately absorb.

The auditing of a modern corporation is far too complex a task 

to presuppose that mathematical models currently could be used to generate

*This uncertainty is subsequently referred to as the auditor's 
"judgmental uncertainty."
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audit decisions. Rather, the model is an experimental tool. Through 

the power of mathematics and computer technology the model allows the 

decision maker to explore the risk implications of trial judgmental in­

puts and potential sample evidence. Or, the model can be used to isolate 

those situations in which worst case input judgments lead to unacceptable 

final risks. Thus the model can be used to cull out those audit situa­

tions worthy of more intensive examination and to explore for these 

situations the implications of input judgments.

The insight gained through such an analysis is another source of 

evidence to be weighted at the opinion formulation stage of the audit 

engagement. This evidence shows the implications of subdividing the 

auditor's inevitable total error judgment into a greater number of more 

manageable component judgments. Modern business education would seem to 

be predicated on such a process. That is, informed judgment is inevitable 

in business decision making. But the risk of errors in the final decision 

often can be lessened by building up evidence from a multitude of lower 

level input judgments.

The auditor's current use of his judgment in interpreting the 

results of statistical sampling is discussed in chapter 3. It is sug­

gested that what has come to be called a Bayesian perspective really is 

a step toward a more rational and objective use of this judgment. Inde­

pendent of these conclusions, the procedures developed in this disserta­

tion are of value even to those auditors who have serious reservations 

about using Bayesian judgmental analysis in the auditing process.

This observation follows from the interrelationship between 

classical statistics and a Bayesian analysis. The usual classical statis­

tical analysis of sample evidence can be shown to be a special case of
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certain Bayesian results. It is only necessary to use the Bayesian re­

sults with a special case of indifferent or noninformative prior evidence. 

This fact leads to a more remarkable observation. A Bayesian analysis 

such as used in this dissertation at times can be used to analyze prac­

tical problems that have not yielded to classical analysis. New class­

ical statistical solutions then can be determined by applying the non­

informative prior specification of evidence to the Bayesian analysis.*

1.3 The Development of the Evi­
dential Integration Model

Research directed at aiding the auditor in his decision making 

process can adopt a number of diverse focuses. Possible areas of research 

include the auditor's decision making processing, the evidential gathering 

activities of the auditor that supports this decision making process, and 

the methods used by the auditor to specify his uncertainty about the 

parameters of potential auditing models. The extant auditing statistical 

research literature for all of these territories are reviewed in chapter

3.

The analysis of this dissertation concentrates on the evidential 

gathering activities of the auditor. A possible extension into the 

auditor's decision making process has not been undertaken. The general 

form such an extension might take is illustrated by Felix and Grimlund 

(1976). Also, as discussed in section 1.1, the behavior issues pertaining 

to the specification of judgmental uncertainty are not analyzed.

*One of the theoretical results used in this dissertation illus­
trates this process (Felix and Grimlund 1977). The classical degenera­
tion of the analysis provides a potential solution to a non-Bayesian 
auditing sample problem recently explored by Kaplan (1973b).
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The dissertation's evidential gathering focus involves two major 

considerations: the nature of i.e.s. evidence, and the implications of

this evidence on account balances. Auditing oriented procedures for ex­

amining these two areas are developed in chapters 4, 5 and 6. These 

three chapters provide the necessary logic for constructing an evidential 

integration model. An example of the use of this logic is given in 

chapter 7.

While it has been found convenient to introduce the notion of an 

i.e.s., this is just a shorthand for a repetitive set of internal control 

or processing steps used to record economic events. The essential attri­

butes that the term i.e.s. is intended to convey are repetition and 

statistical consistency. Thus, the a priori probability of an error 

having occurred in the processing of a randomly selected document through 

an i.e.s. is assumed to be constant.

Analytical procedures for describing such i.c.ss. have been devel­

oped by Cushing (1974) and by Yu and Neter (1973). These authors assume 

that the probability of error for each processing step of a document flow 

is known. In chapters 4 and 5 the approaches of these authors are con­

solidated with the further assumption that there exists a p.d.f. for each 

fixed but unknown processing step error rate. Probabilisitic procedures 

are then developed for determining a p.d.f. for the composite error rate 

of transactions flowing from the i.e.s. These new developments can be 

used by an auditor to specify and explore the implications of his uncer­

tainty about error rates within i.c.ss.

In chapter 6 procedures are developed for combining the trans­

action error rates developed in chapters 4 and 5 with dollar error size 

Information. This analysis builds upon the prior work reported by Felix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

11

and Grimlund (1S77). The current analysis deals with the problems that 

arise when several i.c.ss., numerous transaction types and a variety of 

accounts all are relevant. It is shown how a p.d.f. for the total amount 

of error in one or more accounts can be consolidated from these diverse 

sources of evidence.

Chapter 7 deals with implementation. While it would in theory be 

possible to use the procedures of chapters 4, 5 and 6 to completely model 

an account environment, such an application would be highly unusual. 

Rather, these procedures can be used to explore sources of weaknesses in 

a firm’s system of internal controls. An extensive example of this 

process is developed in chapter 7 and used to illustrate several of the 

procedures of the previous chapters.

1.4 Mathematical Appendices

In the second half of the dissertation, mathematical procedures 

are developed to accommodate the evidential integration model. This work 

is presented in appendices 1 through 5. With a few exceptions these ap­

pendices represent new mathematical expositions, but not necessarily all 

original mathematics. The subsequent summary of these appendices will 

clarify this distinction.

Appendix 1 collects together a number of miscellaneous procedures 

necessary to support the analysis. Of particular interest is the discus­

sion of several methods for approximating the joint moments for correlated 

random variables (r.vs.).

In appendix 2 approximating procedures, moments, cumulants, and 

other properties are developed for "extended" beta p.d.fs. defined on an 

arbitrary interval [a,b]. These results are useful in analyzing error
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rates and in approximating the p.d.f. of one or more total error random 

variables (r.vs.). Many of these results are relatively straightforward, 

and undoubtedly have been derived many times. One result, the recursive 

cumulant relationship, has never been published in journal or book form. 

The published forms for many of the other results, when available, have 

been found to be incomplete, occasionally in error or in obscure sources. 

What is lacking in the literature is a convenient compendium in a common 

notation that brings all this material together and fills in the missing 

gaps. This is the objective of appendix 2.

Appendix 3 develops procedures for approximating an unknown p.d.f. 

with known moments by a Jacobi orthogonal polynomial expansion. Truncated 

forms of the expansion are shown to be a linear function of beta p.d.fs. 

This mathematical form resolves a major analytical problem that otherwise 

arises in combining i.e.s. error rate information with error size data. 

Appendix 3 reviews the theory of orthogonal polynomials and develops new 

procedures for approximating a p.d.f. using Jacobi polynomials. Beside 

their use in the above error rate applications, these procedures can also 

be used to find the p.d.f. of a linear function of "beta-normal" r.vs.

This application allows the auditor to consolidate the total error uncer­

tainty that arises from several weaknesses in separate i.c.ss.

An important analytical tool of the dissertation is the beta- 

normal p.d.f. of Felix and Grimlund (1977). This p.d.f. can be used to 

combine error rate and error size uncertainty. Appendix 4 summarizes 

these results and derives a number of properties of the beta-normal dis­

tribution given without proof by Felix and Grimlund. Several additional 

properties of the distribution are also derived and used to motivate and
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explore the use of an extended beta p.d.f. for approximating a beta- 

normal p.d.f.

Appendix 5 develops an alternative Poisson-gamma model to the 

beta-normal procedure of appendix A. A natural conjugate distribution 

for the skewness and scale parameters of a gamma distribution process is 

derived as part of this development. The Poisson-gamma model is found 

to be not nearly as tractable as the beta-normal approach. A third 

alternative based on the beta and gamma p.d.fs. is discussed in paragraph 

6.2.2. This alternative combines the attractive features of the beta- 

normal and Poisson-gamma approaches. Unfortunately, it is found to be 

just as cumbersome to use as the Poisson-gamma model.

1.5 Concluding Remarks

Four different classes or modules of mathematical procedures are 

used to develop an evidential integration model. These modules are used 

to determine and consolidate the auditor’s uncertainty pertaining to both 

error rates and total error amounts. The dissertation’s organization 

with respect to these four modules is shown in figure 1.5.1. The sec­

tions and appendices most relevant to each module is shown in the figure. 

The appendices of primary importance for a module are shown in the upper 

part of each diagram. For each module the relevant inputs and outputs 

also are shown. For instance, in the error amount determination module, 

the output is a beta-normal p.d.f. which affects at least two accounts as 

a result of the double entry booking structure.

An example of how these modules can be combined to develop an 

evidential integration model is given by figure 1.5.2. In this figure 

three i.c.ss. generate error rates. However, since the dollar error
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sizes need not be distinguished between i.c.ss. 2 and 3 a preliminary 

error rate consolidation module is illustrated. Since account 2 collects 

errors from both i.e.s. 1 and consolidated i.e.s. 2/3, the total error 

p.d.f. for this account is found through an error amount consolidation. 

Finally it is assumed that accounts 1 and 3 are of the same class (i.e., 

current assets), and consequently a consolidated p.d.f. is desired for 

all errors of the class.

As is to be expected and can be seen from a close examination of 

figures 1.5.1 and 1.5.2, the expositional flow in the subsequent chapters 

of the dissertation does not strictly correspond to the logical flow 

illustrated in these figures. An exposition that completely parallels 

the logic flow would tend to prematurely address secondary issues and 

reduce the clarity of the discussion.
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CHAPTER 2

WHY EVIDENTIAL INTEGRATION?

2.1 Preface

The application of statistical methods to auditing has become a 

very active issue of interest to accounting practitioners and theorists. 

In recent years there has been a multitude of articles, working papers 

and symposium discussions calling for research, presenting methodological 

suggestions or developing normative models. The Accountants Index pro­

vides one measure of this interest. In the last 5 years there have been 

approximately 165 citations listed under "Testing and Sampling."

In reviewing this literature it is apparent that the focus of 

interest in auditing with statistical sampling and inference has shifted. 

As will be indicated, the accumulative evidence today suggests that there 

is wide acceptance of the statistical approach to testing transactions 

and specific balances. Thus, the level of training among practitioners 

appears to be a major determinant of the degree of use of these 

methods.

This wide acceptance of the statistical approach has shifted the 

focus of research to questions of summarizing multiple sources of evi-' 

dence. The long-standing research question, of how statistical proce­

dures fit into the overall evidential gathering process, has taken on a 

new significance. As the profession looks ahead, one ponders if these 

procedures will remain singular sources of information. Or can increased 

levels of efficiency and confidence be achieved by formally consolidating
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these isolated sources of statistical evidence with standard auditing 

evidence in an evidential integration process.

As mentioned in section 1.1 there are two secondary dimensions 

to this research question. First the analytical question of how such an 

evidential integration process can be structured. And second the empir­

ical question of how useful to the auditor is the resulting structure.

Any potential resolution of these secondary questions must be based upon 

analytical and empirical research. However, before undertaking such re­

search there is a prerequisite need for some a priori bases for hypothe­

sizing the ultimate success of the overall endeavor. In this chapter the 

relevant views of practitioners and researchers are discussed in conjunc­

tion with several independent observations of the author.

2.2 Where We Stand Today

The application of statistical methodology to auditing is very 

understandable. Both disciplines strive to use specific observations as 

a basis for making evidentially supportable generalization. Such logical 

similarities provide normative support for the use of statistics in 

auditing. A more descriptive test of the operational appropriateness 

of the methodology can be derived from the collective appraisal of prac­

titioners .

In recent years the use of statistical procedures by independent 

auditors has been surveyed by a growing list of researchers including 

Jacobs (1971), Dennis (1972), Joseph (1972), Ross, Hoyt and Shaw (1972), 

Hubbard and Strawser (1972,1973), Barkman (1974), and Bedingfield (1975). 

Hubbard and Strawser’s (1972) sample indicates that "CPA have made sub­

stantial progress in integrating statistical sampling methods in their
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practice in recent years" (p. 673). Through in-depth interviews with 

personnel of the largest accounting firms, Barkman found that the use of 

quantitative procedures by these firms was restricted to classical survey 

sampling and hypothesis testing.

Bedingfield's recent survey suggests that CPA partners in the 

aggregate are favorably disposed to such methodology. Bedingfield con­

cluded that: "Statistical sampling is widely used in the test of trans­

action (i.e., compliance tests) and in those areas of balance verifica­

tion (i.e., substantive tests) characterized by a large volume of defined 

sample units . . ." (p. 54).

This general interest in statistical sampling by auditors is not 

limited to independent CPA firms. In discussing the use of such pro­

cedures by the U.S. General Accounting Office, Gentile (1974) notes that 

"three professional staff statisticians have received over 850 requests 

for assistance in the past year from the audit staffs" (p. 16). Gentile's 

concluding paragraph is of particular interest.

Today, more than ever, there is a pressing, almost desperate 
need for reliable data which can be used for decisionmaking in 
every field. This need will continue to grow, and auditors 
will be asked to provide an increasing share of it. Because 
statistical sampling is the only practical way of obtaining 
data of known reliability, it is a practical necessity for 
today's auditor to have a working knowledge of it. (p. 16)

This need for training is a recurring theme in the survey liter­

ature. Bedingfield observed that the "two most prominent reasons (given 

by CPA partners) for not using statistical sampling were the lack of 

training and the feeling that statistical sampling is not as relevant for 

firms that service mainly small clients" (p. 53). Kinney and Ritts (1973, 

pp. 3-4) cite several other authors including Ross, Hoyt and Shaw, who
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have reached similar conclusions. Joseph (1972) commented in his ab­

stract that "offices of large firms expressed their apprehension about 

accepting the use of statistical sampling, because of the disadvantages 

when placed in the hands of inadequately trained personnel."

A search for objectivity appears to be the driving force drawing 

auditors to statistical sampling. Bedingfield states:
l

The most common reason offered for initially resorting to 
statistical sampling was the objectivity of the technique.
This objectivity is evidenced in two respects— the objectivity 
of the technique when viewed by third parties (i.e., it is de­
fensible) and the objectivity inherent in the analysis of the 
results, (p. 54)

Some indication of what auditors may perceive as objectivity to

a third party can be drawn from the following remarks by Stoker (1971)

of Haskins and Sells:

. . .  I felt that a great benefit that we derive from the use 
of statistical sampling is the increased quality of audit 
work of our staff accountants, particularly in establishing 
the direction of the audit test and definition of accounting 
populations, (p. 138)

In discussing "What are the courts saying to auditors?" Sommer (1972)

summarizes the rising third party judicial pressures that suggest a

greater need for such objectivity:

. . . the performance of the accounting profession is going 
to be increasingly subject to judicial scrutiny. As the task 
of bringing class suits has been moderated, and as potential 
plantiffs and their counsel have witnessed the ease with 
which judicial intervention may be secured, accountants in­
creasingly may expect to have their work thrust into the 
judicial arena either by private litigants or the S.E.C. (p.
33)

Current empirical evidence provides no basis for hypothesizing 

that the current trend toward statistical sampling will result in in­

creased procedural efficiency. The CPAs surveyed by Bedingfield ex­

pressed mixed feelings about the potential for cost reductions with
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statistical sampling. Bedingfield does not draw any statistically sig­

nificant conclusions from these results. In a field experiment Kinney 

and Ritts (1973) developed evidence suggesting that the statistical 

sample size of practicing auditors are not smaller than the equivalent 

judgmental sample size. These descriptive results contrast with the 

normative potential for smaller sample sizes found by Aly and Duboff

(1971).

The early experience of Haskins and Sells also is indicative of

an objectivity rather than efficiency effect. Stringer (1963) noted

that for nearly 400 applications of the Haskins and Sells sample plan

spread over 150 engagements that:

The effect of this plan on audit time was not significant 
. . . These results confirmed the premise on which the plan 
was originally developed and advocated— namely that it would 
provide a more objective basis for audit sampling but would 
not necessarily reduce audit time. (p. 411)

The growing use of statistical sampling is not surprising in view

of the implicit emphasis on objectivity of the third standard of field

work of the AICPA Statement on Auditing Standards (S.A.S.) No. 1 (1973):

Sufficient competent evidential matter is to be obtained 
through inspection, observation, inquiries and confirmation 
to afford a reasonable basis for an opinion regarding the 
financial statements under examination. (§ 150.02)

Statistical sampling with its explicit statement of sampling precision

and reliability can, when properly exercised, conform to the spirit of

the standard.

Objectivity is of course an admirable goal for auditing, but a 

caveat is in order. As succinctly stated by Broderick (1974) (an 

Arthur Young parnter), the "exercise of judgment is at the heart of 

auditing" p. 77. Thus in this view the professional auditor contributes
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more to the auditing process than merely to act as a concert master for 

a collection of objective procedures.

The third S.A.S. standard gives explicit recognition to the 

opinion or judgmental nature of auditing. S.A.S. No. 1, section 320A, 

further explores the interrelationship between statistical sampling and 

auditing judgment. Section 320A.03 quotes a special report issued in 

1962 by the Committee on Statistical Sampling. Of particular interest 

is the following passage used as an introductory statement for the subse­

quent discussion.

Although statistical sampling furnishes the auditor with 
a measure of precision and reliability, statistical techniques 
do not define for the auditor the values of each required to 
provide audit satisfaction.

Specification of the precision and reliability necessary 
in a given test is an auditing function and must be based up­
on judgment in the same way as is the decision as to audit 
satisfaction required when statistical sampling is not used.

The subsequent evolutionary elaboration of this basic 1962 posi­

tion has been chronologized by Stringer (1972). The current S.A.S. posi­

tion has amplified the judgmental relationship between compliance tests 

of internal control systems and substantive tests of account balances. 

However, the philosophical basis has not changed:

The relative weight to be given to the respective sources 
of reliance and accordingly, the sampling reliability desired 
for his tests of details are matters for the auditor's judg­
ment in the circumstances. The committee believes that reli­
ability levels used in sampling applications in other fields 
are not necessarily relevant in determining appropriate levels 
for applications in auditing because the auditor's reliance on 
sampling is augmented by other sources of reliance that may 
not be available in other fields. (§ 320A.15)

The current guidance in these matters provided by S.A.S. No. 1 

recently was summarized by Taylor (1974):
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The auditor should first make a preliminary decision 
about the internal control over a particular class of trans­
actions or balances. If he decides that he cannot rely on 
the internal control to prevent material errors, then he 
should obtain his satisfaction solely from substantive 
tests. As a result, it would not be necessary to test for 
compliance deviations since no reliance is being placed on 
the internal control.

If the auditor does make the preliminary judgment that 
the internal control can be relied on to prevent material 
errors, he will be able to adjust downward the reliability 
level he will need for related substantive tests. To support 
this reduced reliability, the auditor must satisfy himself 
that his preliminary decision on internal control was correct.
(p. 80)

A number of suggestions have been made on how to implement such 

general guidelines. Elliott and Rogers (1972) have developed a substan­

tive hypothesis testing strategy based upon the auditor's judgment of the 

internal control systems. An algorithm is used to establish the risk 

levels of the tests. Smith (1972) has commented on the confusion of 

several authors about the relationship between reliability and precision. 

Smith also contrasts Bayesian judgmental assessments with reliability 

and precision judgmental assessments. Broderick (1974) has examined in 

some depth the auditing implications of judgmental reliability and preci­

sion assessments. He presents tables for translating judgments such as 

"excellent," "fair" and "weak" into numerical reliability and precision 

values.

2.3 Looking Ahead

In looking towards the future several questions are apparent. 

Can the current reliability and precision judgmental assessment process 

be improved upon? Will the current techniques serve the needs of the 

future socioeconomic/legalistic environment?
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One appraisal pertaining to the first question has been given by 

Yu and Neter (1973):

Statistical sampling is one means of obtaining objective 
audit evidence. Unfortunately, the use of this tool has been 
fragmental, and its potentiality for reducing subjective ele­
ments of the auditor's judgments on internal controls and the 
evaluation of account balances has not been fully exploited.
(p. 274)

Looking at the second question Loebbecke (1974) commented that "if 

we are to provide a high level of audit services on a continuing basis, 

we must use techniques to preserve objectivity" (p. 73). In examining 

means of achieving objectivity, Loebbecke's thinking adds analytical 

depth to the previously examined broad interest among auditors in objec­

tivity. Summarizing several advantages to a decision model presented by 

Felix (1974), Loebbecke sees objectivity as being achieved through:

1. Control of risk through precise definitions
2. Expression of decision criteria in more meaningful terms
3. A vehicle to motivate better response to changes in the 

audit environment
4. A framework for improved communication both between 

auditors and with those affected by auditor results.
(p. 73)

Of particular interest in evaluating the current judgmental reli­

ability and precision assessment process is Loebbecke's first objectivity 

criterion (originally mentioned by Roberts 1974, p. 48). When the 

auditor determines sample reliability and precision levels, and then 

states that because of additional evidence the situation is more favor­

able, there is no precise definition or control of risk. This is not to 

say that the auditor's assertion is not totally accurate, only that there 

is no basis or standard on which a third party can evaluate the risks.

An AICPA case study on the "Extent of Audit Samples" gives some 

ground for concern about how a third party can evaluate these risks.
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Stoker (1971) of Haskins and Sells, in discussing the case study, con­

cluded that the variation in judgment among eight auditors out of sep­

arate firms "indicates some inconsistency in judgment" (p. 137) among the 

auditor's appraisal of the case.

Such inconsistency is hardly surprising. The auditor is being 

asked to take his directly observable data pertaining to internal control 

error rates and dollar error amounts, and translate them subjectively 

into something which he has little experience with. Whether the auditor 

deals with sample sizes or desired reliability and precision levels, the 

process is the same. There is no link or feedback which relates the ob­

served data with the demands the auditor is called upon to fulfill.

This is a missing or weak link in the current judgmental procedures of 

auditors.

The present circumstances clearly violate Carmichael's (1972)

. concept of a comprehensive auditing theory:

A theory of auditing should be an organized and systema­
tized body of knowledge of the field of auditing, which 
identifies the variables of the auditing practice and ex­
plains their importance, interrelationship, and implications.
(p. 102)

In particular, the potential for understanding the interrelation­

ship and implications of auditing judgmental variables would seem to be 

enhanced if the auditor's judgment focused on his observable data. By 

focusing on error rates and error amounts the auditor could apply his 

inevitable and valuable judgment to attributes that fall within his 

realm of experience.

In order to continue the logical trend of this analysis, the con­

cept of Bayesian judgment can be introduced. There are currently, of 

course, analytical problems in collecting and bringing together Bayesian
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judgments over a multitude of i.c.ss. Aside from these technical issues, 

some auditors are apprehensive about introducing the "subjectivity" of a 

Bayesian process.

While perhaps a valid concern in some disciplines, this concern 

is not the real issue in auditing. The subjectivity of the auditor's 

judgment is an inevitable aspect of the evidential gathering process. 

Abstracting somewhat, the current evidential auditing model is already a 

Bayesian process. The real question is an empirical question that can 

be dealt with through research. Can the auditing process be improved by 

directing the auditor's judgment at the observable error attributes, 

rather than by relying upon a judgment at higher levels of summarization? 

Succinctly stated, is the auditor's judgment more informative at a lower 

level of abstraction?

A priori considerations suggest an affirmative response. Judg­

ments based upon lower levels of abstractions may relate more directly to 

the auditor's past experience. In addition, much of the scientific 

development in business and in other disciplines has focused on pushing 

back the level of measurement to a lesser and lesser degree of abstrac­

tion. Thus, this question focuses in part on whether or not this his­

torical trend is also applicable to auditing.

Stringer (1972) of Haskins and Sells adds weight to such an 

affirmative a priori conviction. In considering statistical sampling 

standards he noted that:

Any presentation of a mathematical model in which subjec­
tive judgments and objective measurements are combined invites 
the somewhat annoying, but nevertheless completely accurate, 
criticism that the former cannot be quanitifed precisely.
This criticism, however, does not impugn the usefulness of a 
model in focusing attention on the separate elements in a
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complex problem, and in showing the relationship between these 
elements. Furthermore, this criticism invites the rebuttal 
that it is more rational to quantify some of the separate ele­
ments of a problem subjectively if necessary, than to deal 
subjectively with the entire set of elements where some can 
be measured objectively, (p. 49)

In their examination of the third party legal ramifications of 

auditing, Reiling and Taussig (1970) also have expressed interest in a 

Bayesian approach.

Financial reporting would be greatly improved if a 
Bayesian probability approach were applied to the financial 
statements. . . . Many lawsuits would be avoided if auditors 
would simply indicate that they are not certifying to deter­
ministic facts, but rather expressing an opinion on estimates 
from probability distributions, (p. 45)

As is often the case in the development of new methodological ap­

proaches, Bayesian auditing techniques have been proposed on a fragmented 

basis. While necessary in order to awaken research interest in more 

meaningful composite procedures, such early proposals also create dis­

interest because of their narrow focuses within a much larger problem.

2.4 Concluding Remarks

The procedures developed in this dissertation for constructing an 

evidential integration model can significantly expand the scope of such 

Bayesian analyses. The total implication of tests of both i.c.ss. and 

account balances for a multitude of systems and accounts can be considered. 

An evidential integration model can be used to develop probabilistic 

statements of the total error in financial statement accounts. Conse­

quently, it might be possible to implement the previously quoted sug­

gestion of Reiling and Taussig. Also, such a statement of the probabil­

istic nature of a financial statement can increase the communication 

between the auditor and those affected by the auditor's results.
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Finally, by reducing the level of abstraction, that is used by 

the auditor in making judgments, the process of setting professionwide 

guidelines might be enhanced. As a previous quote from Sommer has indi­

cated, such standards could have real legal and hence economic signifi­

cance to the auditor. By allowing the auditor some measure of risk 

protection, standards help to avoid overly conservative auditing pro­

cedures. Auditors, clients and society in general tend to benefit from 

the avoidance of such extreme legal pressure.
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CHAPTER 3

A REVIEW OF THE LITERATURE ON STATISTICAL 

' PROCEDURES IN AUDITING

3.1 Preface

The literature of auditing statistical methodology and related 

research presents a very confusing multitude of procedures and proposals. 

There is a vast array of assumptions and results only loosely related.

In order to understand what has been accomplished, what remains to be 

achieved, and what this dissertation does, it is convenient to first 

develop a conceptual framework for classifying auditing statistical re­

search and methodology.

The major emphasis of auditing statistical literature is on com­

piling information and presenting it in a quantitative framework. One 

significant difference is the type of information that is utilized. The 

conceptual framework presented in the next section focuses on the variety 

of evidence utilized and the degree (or level) of evidential integration. 

This evidential integration framework is then used in section 3.3 as a 

basis for reviewing the auditing statistical literature, and for focusing 

on the methodological gaps that are considered in this dissertation. In 

order to serve this latter objective, a pyramiding structure of succes­

sively higher levels of evidential utilization and integration has been 

used. This evidential ranking structure does not in any way measure the 

relative utility of the accompanying statistical methods.
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3.2 An Evidential Integration Frame­
work for Classifying the Literature

At a lowest level of evidential integration sample data are ex­

tracted and summarized without matching up each sample observation with 

the client's corresponding stated value. Only, aggregate sample measures 

are compared with the corresponding summary values from the client's 

records. Mean-per-unit sampling and ratio estimating are two examples 

of this lowest level of evidential integration.

In mean-per-unit sampling this comparison between sample and 

client data is made at the confidence interval or hypothesis testing 

phase of the analysis. In using the standard form of the ratio esti­

mating procedure only the client's stated values for the total account 

and the total of all sampling items are incorporated into the estimating 

procedure. With all these procedures the detailed control-level elements 

of the client's records are only used as contributory elements of aggre­

gate summary measures.

At a second level of evidential integration each sample item is 

compared or otherwise mathematically combined with the corresponding 

client value. A substantive test with a regression estimator fits in 

this category. Ratio estimating procedures also are available at this 

level of evidential integration (Cochran 1963, pp. 176-177). Compliance 

testing (i.e., a document error rate analysis) is a second level "quali­

tative" evidential integration procedure. The acceptable processing 

procedure for each sample item is compared with the client's actual pro­

cessing. The correct/incorrect binary classification is determined at 

the item level. In such second level procedures each individual sample
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item is compared to the corresponding item of the client's detailed 

records. An aggregation of all of those comparisons is then evidential 

integrated with the client's summary records.

A Bayesian statistical analysis of compliance errors is an ex­

ample of a third level of qualitative evidential integration. In addi­

tion to the sample and client sources of evidence, a quantification of 

the auditor's judgmental uncertainty provides a third source of evidence. 

Bayesian regression estimation in substantive testing is an example of a 

third level of quantitative evidential integration. In these procedures 

there are three sources of information available for evidential integra­

tion with the client's summary records.

At a third level of evidential integration either a Bayesian 

compliance procedure or a Bayesian substantive procedure (i.e., an ac­

count balance confirmation) are evidentially integrated. A quantitative 

integration of these two procedures will be considered a fourth level of 

evidential integration. Detailed client compliance information, detailed 

client substantive information, auditing sample information and the 

auditor's informed judgment provide four conceptual sources of evidence 

available for evidential integration.

In many cases the auditor may wish to combine evidentially inte­

grated information from several accounts (or strata within the same 

account). Such a procedure will be considered as a fifth level of evi­

dential information. The previous four conceptual sources of evidence 

are being integrated over a multi-account environment. Such an analysis 

would provide composite statistical measures for the sum of these ac­

counts (or strata).
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If this composite measure is utilized in a decision theoretic 

expected value (or utility) analysis, a sixth level of evidential inte­

gration arises. The possible loss function implications of the auditor's 

decision is combined mathematically with the additional sources of evi­

dence.

The above evidential integration pyramiding structure has intro­

duced six conceptual sources of evidence that potentially are of use to 

the auditor: the auditor's sample evidence, the client's detailed compli­

ance records, the client's detailed account records, the auditor's in­

formed judgment, the multiple accounts and the auditor's appraisal of the 

loss function implication of his action. Statistical procedures that 

utilize such a broad range of evidence are not necessarily more useful to 

the auditor. The degree of evidential integration is a measure of the 

scope of the analysis, not necessarily the statistical power or useful­

ness of the analysis.

The pyramiding structure presented in this section is, of course, 

arbitrary. Other researchers may choose to classify various types of 

evidence in a different order or structure. The six types of evidence 

and the pyramiding structure does provide a convenient basis for under­

standing the scope and framework of existing research and methodology.

The structure also provides a convenient basis for contrasting the dis­

sertation's evidential integration framework with the current literature.

3.3 A Review of the Literature

Considerable statistical guidance is available to the auditor to 

assist him in performing isolated statistical tests of accounting records 

at the primary level of evidential integration. Cyert and Davidson (1962),
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Arkin (1963) and the AICPA (1967) series have restated in auditing ter­

minology many classical statistical sampling procedures. In recent 

years several authors have suggested that such routine application of 

classical statistical theory to the audit environment may lead to diffi­

culties .

Ijiri and Kaplan (1971) have suggested that the ’’representative" 

classical sampling objective may be too restrictive for auditing. A sub­

sequent survey by Hubbard and Strawser (1972) compared the multiple ob­

jective criteria of Ijiri and Kaplan with those of CPAs. Elliot and 

Rogers (1972) have suggested that, given the auditor's concern for Type 

II error, he should concentrate on hypothesis testing of accounts rather 

than establishing confidence intervals. They propose a nondecision 

theory approach for setting the probability of Type I and Type II errors.

McCray (1973) has illustrated the use of standard "level one" 

ratio estimation and "level two" difference estimation. Kaplan (1973b) 

has considered the validity of the usual statistical approximation used 

in such tests. He has demonstrated that significant statistical diffi­

culties can arise when the auditor uses either "level one" or "level two" 

ratio (or "auxiliary") estimating procedures in such substantive tests.

In the auditor's usually low substantive error rate environment, the 

classical statistic's t-distribution approximation of these procedures 

breaks down.

In a separate study Kaplan (1973a) has developed mean, standard 

deviation and book-to-actual correlation formulas for a particular model 

of the low error rate audit environment." Kaplan showed how a substantive 

sample size for ratio and regression estimation can be developed. He
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recognized that the applicability of his theory is restricted because of 

the fore mentioned limitations on the t-distribution approximation.

Several authors (Meikle 1972; Anderson and Teitlebaum 1973; 

Teitlebaum 1973; Goodfellow, Loebbecke and Neter 1974; Teitlebaum and Robinson 

1975; Teitlebaum, Leslie and Anderson 1975; Kaplan 1975a; and Garstka 

1976) have discussed dollar unit sampling as a potential alternative to 

substantive methods that rely on the questionable t-distribution approxi­

mation. While a procedure equivalent to dollar unit sampling has been 

utilized in the Haskins and Sells AUDITAPE system for a number of years, 

only recently has an open discussion of the method emerged.

Dollar unit sampling is an application of probability proportional 

to size sampling to a sample population composed of account balances. It 

is a "level two" procedure that analyzes the errors in an account at the 

sample dollar level. There are two aspects to the procedure: a sampling

population made up of dollar units rather than control accounts, and a 

worst case approximation of "risk" that avoids using the t-distribution.

The substantive testing aspects of the dissertation's evidential 

integration model provide another potential alternative to relying on 

the t-distribution approximation (Felix and Grimlund 1977). This pro­

cedure can be utilized with either a dollar unit sampling frame or a con­

trol account sampling frame. Unlike dollar unit sampling the procedure 

does not focus on a worst case approximation of risk. Rather, the pro­

cedure expresses the total dollar error uncertainty with a probability 

distribution that takes into consideration the special nature of the audit 

environment. The procedure has been developed at a Bayesian "third level" 

of evidential integration. However, the procedure can be stripped of its
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reliance on the auditor's judgment by using a diffuse or noninformative 

prior judgment.

Bayesian evidential integration currently appears, to be within 

the realm of auditing research rather than an applicable methodology. 

Surveys conducted by Jacobs (1971), Dennis (1972), Ross, Hoyt and Shaw

(1972), and Bedingfield (1975) provide no evidence of any utilization of 

a Bayesian level of evidential integration. Kraft (1968) and Tracy 

(1969) have illustrated discrete Bayesian calculations, for compliance 

error rate testing. Smith (1972) has compared the sample size implica­

tions of these methods with the AICPA supported variable confidence level 

approach. Francisco (1972) has reviewed and illustrated a comparable 

procedure with a continuous probability distribution.

The performance of auditors in specifying error rate distribu­

tions has been studied by Corless (1972) and Felix (1976). Corless' 

experimental results show considerable variation in the judgmental re­

sponses of auditors. After a preliminary training session Felix found 

somewhat less dispersion in judgmental response between a quartile 

measurement method (also used by Corless) and an equivalent prior sample 

method. These results suggest the need for a well developed training 

procedure, and a careful consideration of the type of methods used.

The analysis of Felix and Grimlund (1977) is an example of a 

"third level" of evidential integration. There are no other published 

suggestions for quantitative level three Bayesian evidential integration 

within a substantive test of account balances. The sample data collected 

in such substantive tests cannot be realistically analyzed using standard 

Bayesian mathematical procedures. Since the majority of the sampled 

subsidiary accounts in a substantive test will be correct a sample of
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monetary error amounts is primarily composed of zero amounts with only 

an occasional nonzero item. This cluster of zero amounts violates the 

usual assumption of normality. The Felix and Grimlund analysis shows 

how these difficulties can be avoided when using detailed (i.e., item 

level) book value data from the client's records.

Several other Bayesian studies have avoided these "level three" 

substantive difficulties by not considering the availability of detailed 

client book values. Knoblett (1963,1970) has demonstrated how a Bayesian 

prior judgment could be added to a "level one" mean-per-unit classical 

analysis of an account balance. Deakin and Granof (1974) have shown how 

conditional probabilities of hypothesis testing errors can be derived 

from regression estimates of account balances (see also Kinney and Bailey 

1976, for a fuller discussion of the underlying problems and assumptions). 

Deakin and Granof use these conditional probabilities to revise subjec­

tive prior probabilities of these same errors. The Bayesian analysis is 

used to determine a sample size for a mean-per-unit substantive test.

Using this same mean-per-unit Bayesian approach, Kinney (1974) 

has applied decision theory to a two state/two action formulation of a 

substantive test of an account. Assuming linear sampling costs and 

fixed Type I and Type II error losses, he showed how the auditor can make 

optimal expected value decisions. The procedure can be used to make 

sampling decisions, to determine acceptance and rejection regions, and to 

determine the corresponding probabilities of Type I and II errors. The 

procedure is also applicable to a constrained fixed sample size analysis.

In a subsequent paper Kinney (1975) extended the analysis to 

include a compliance test of a single i.e.s. For this single account/ 

single i.e.s. environment, compliance and substantive sample sizes and
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other optimal actions are determined. As emphasized by Kinney, the 

i.e.s. linkage to an account balance needs to be investigated in more 

depth.

Apparently, little attention has been directed toward the prob­

lem of quantitatively integrating for a single account both the indirect 

compliance tests of the supporting i.c.ss. and the direct substantive 

test of the balance. Except for a few brief observations by Cushing 

(1974), Kinney's (1975) procedure stands alone in the literature. The 

evidential integration procedures of chapter 6 link together both types 

of tests over a multitude of i.c.ss. These linkage procedures are based 

upon the audit oriented analysis of i.c.ss. developed in chapters 4 and 

5.

The dissertation's "linkage" analysis leads to a probability dis­

tribution for the total dollar error in an account or a partitioned 

stratum of an account such as all receivables under the control of a 

particular division. Procedures are discussed in chapter 6 for consoli­

dating dollar error probability distributions from several accounts (or 

account strata) into a single distribution. This analysis provides a 

fifth level of evidential integration.

When a total error probability distribution can be specified for 

an account (or series of accounts) a decision theory expected value 

analysis can be easily constructed. Sorensen (1969) has illustrated an 

expected net sample gain and discrete Bayesian probability revision 

analysis for compliance testing. For substantive testing Felix (1974) 

has shown how the expected net sample gain and optimal sample size can 

be determined from existing discrete probabilities. The two decision 

theory loss function procedures by Kinney have already been discussed.
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Theoretical treatises exploring various loss function objectives for 

auditors have been advanced by Demski and Swieringa (1974), and Scott 

(1975a,1975b,1976).
I

Scott (1973) has developed a multiple accounts Bayesian decision 

theoretic analysis. The model is major theoretical accomplishment; how­

ever, it has several difficulties. The model utilizes nonlinear loss 

functions that do not flatten out at large error values. Further, the 

multivariate sample unit represents the total daily net error for a set 

of accounts. Such a sample unit is suggestive of a normal distribution 

process. However, for those enterprises with sufficient transaction 

volume to validate such a multivariate central limit theorem assumption, 

it probably would be economically impossible to analyze more than a few 

days of accounting work. The sample evidence of such a small sample size 

usually would not significantly alter the auditor’s prior judgmental 

uncertainty.

3.4 Concluding Remarks

Part of the research discussed in this literature review has been 

summarized by major focuses of consideration in table 3.4.1. In partic­

ular, this table focuses on research concerned with judgmental specifica­

tion and/or the integration of multiple sources of evidence. The scope 

of the dissertation is shown on the final line of the table.

It is apparent from this literature review, that the auditor is 

faced with a very difficult statistical problem. This is a problem that 

presses upon the frontiers of mathematical statistics. A combination of 

multiple sources of evidence, low error rates, variability and skewness 

in the distribution of control account balances, and the indirect
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consequences of actions all create an environment in which it is diffi­

cult to develop all-inclusive procedures.
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Tabic 3.4.1

Internal
LOSS
Data

Account
[inlances

CJont rol
Systems

The Type of Evidence Considered in the Literature on 
Statistical Procedures in Auditing

Authors by Subject Area and Date

Detailed ICS Decomposition
Analysis 
Cushing (A  74>

Yu and Netcr (1973)
Standard Statistical Analyses 
Cyert and Davidson (1962)

Arkin (1963)
Judgmental Assessment in Com- 
pliance Testing_______________
Corless (19 72)

Felix (1976)

Francisco (1972)

Kraft (1968)
Smith (1972)

Sorensen (1969)
Tracy (1969)
Judgmental Assessment in Sub­
stantive Testing______________
Deakin and Granof (1974) 

Felix (1974)

Felix and Grimlund (1977) 
Felix and Grimlund (1976) 
Ijiri and Kaplan (1971) 
Kinney (1974)

Knoblet (1970)
Scott (1973)
Dollar Unit Sampling
Anderson and Teitlebaum (1973) 
Kaplan (1973b)

Metke (1972)
Teitlebaum (1973)
Teitlebaum ot al, (1975)

Teitlebaum and Robinson (1975) 
Gastka (197b)
Kaplan (1975a)

Integrative ICS/Account
Anal y s e s __
Kinney (19 75)

This Dissertation

A Mathematical Approach to the Analysis and Design 
of Internal Control Systems 

A Stochastic Model of the Internal Control System

Statistical Sampling for Accounting Information 

Handbook of Sampling for Auditing and Accounting

Assessing Prior Distributions for Applying Bayesian 
Statistics in Auditing 

Evidence on Alternative Means of Assessing Prior Proba­
bility Distributions for Auditing Decision-Making 

The Application of Bayesian Statistics to Auditing: 
Discrete versus Continuous Prior Distributions 

Statistical Sampling for Auditors: A New Look
The Relationship of Internal Control Evaluation and 

Audit Sample Size 
Bayesian Analysis in Auditing 
Bayesian Statistical Methods in Auditing

Regression Analysis as a Means of Determining Audit 
Sample Size 

A Decision Theory View of Auditing

A Model for the Decomposition of Audit Evidence 
Payoff Functions for Auditors: A Descriptive Analysis
A Model for Integrating Sampling Objectives in Auditing 
A Decision Theory Approach to the Sampling Problem in 

Auditing
The Applicability of Bayesian Statistics in Auditing 
A Bayesian Approach to Asset Valuation and Audit Size

Dollar-Unit Sampling: A Solution to the Sampling Dilemma
Statistical Sampling in Auditing with Auxiliary 

Information Estimators 
Statistical Sampling in an Audit Context 
Dollar-Unit Sampling in Auditing
An Analvsis of Recent Commentary on Dollar-Unit Sampling 

in Auditing 
The Real Risks in Audit Sampling
Computing Upper Error Limits in Dollar Unit Sampling 
Sample Size Computation for Dollar Unit Sammpllng

Decision Theory Aspects of Internal Control Systems 
Dcsign/CompUnnrt' and Substantive Tests 

A Framework for the Integration of Auditing Evidence
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CHAPTER 4

AN AUDITING MODEL OF AN INTERNAL CONTROL SYSTEM

4.1 Preface

As emphasized by the AICPA second standard of field work (AICPA

S.A.S. No. 1, 1973, §320) the auditor's study and evaluation of the in­

ternal controls of an accounting system is a necessary part of an audit 

engagement. The specific interrelationship of these and other field pro­

cedures have been diagrammatically illustrated by Kinney (1975). This 

analysis shows that all routes to an opinion about a firm's financial 

statements require, under S.A.S. No. 1, an evaluation of the design of 

the internal controls of the firm.

The next two chapters are concerned with the auditor's study and 

evaluation of the various systems of internal control utilized by a firm. 

This chapter focuses on the background and implementation issues of a 

potential methodology for studying i.c.ss. The mathematics of the 

methodology is presented in the next chapter. Procedures are developed 

in this analysis for modeling the auditor's uncertainty about the relia­

bility of each processing step of an i.e.s. It is then shown how these 

individual evaluations can be combined into a global evaluation of the 

uncertainty about the reliability of the journal entries that are gen­

erated by an i.e.s.

The procedures presented in these two chapters can be used to ex­

plore and summarize the auditor's judgmental and sample evidence about 

the operation of an i.e.s. While normally the procedures would only be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

42

used to explore areas of weakness with an i.e.s. (Moriarity 1975, pp. 32- 

33), the logic developed could be used to model a complete i.e.s. This 

logic corresponds to the error rate determination module of figure 1.5.1.

Recent articles by Yu and Neter (1973) and Cushing (1974) have 

outlined probabilistic functions for evaluating i.c.ss. Both approaches 

view an internal control processing system for accounting documents as 

made up of series of processing steps each of which contains several pos­

sible error rates. The two approaches differ in the type of processing 

steps that are analyzed. Yu and Neter focused on the flow of documents 

through an i.e.s. Cushing is primarily concerned with the detection of 

errors in documents and the procedures used to correct these errors.

In both analyses it is assumed that there is perfect knowledge of 

the various probabilities of error within each processing step of the 

i.e.s. Yu and Neter see their analysis as providing for greater objec­

tivity in the study of i.c.ss. than is possible with the traditional use 

of checklists, flowcharts and questionnaires (see Brown 1962; AICPA S.A.P. 

No. 54 1972). Cushing states that his approach is "entirely consistent 

with the spirit of a Statement on Auditing Procedures No. 54" (p. 25).

The assumption of perfect knowledge of error rates* seriously 

limits the use of the Yu and Neter, and Cushing "accounting functions" in 

an audit environment. A good part of the investigative stage of an audit 

is implicitly concerned with evaluating the error rates assumed by these 

authors to be known values. Thus, procedures that recognize the auditor’s 

unavoidable uncertainty about processing step error rates would be of

*The terminology "error probabilities" is more accurate. How­
ever, this leads in the subsequent discussion to confusing references to 
the probability distribution of the error probability. For this reason 
term error rate(s) is usually used in the following development.
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more value to the auditor. Such "auditing functions" are developed in 

this and the next chapter.

This chapter considers several background and implementation 

issues that can arise in utilizing and evaluating the auditing functions 

developed in the next chapter. The notation of Yu and Neter is intro­

duced. The various assumptions of statistical independence are discussed. 

The relationship between the auditor's traditional forms of compliance 

evidence and the monetary error rate emphasis of the auditing functions 

is analyzed. And finally the types of p.d.fs. and calculating techniques 

that might be used to represent the auditor's error rate uncertainty are 

reviewed.

In chapter 5 the mathematics of the auditing functions are devel­

oped. Then in chapter 6 these i.e.s. functions are integrated with sub­

stantive evidence from account balances. Finally in chapter 7 the appli­

cation of these functions to current auditing practice is illustrated 

with a case study.

4.2 Background Considerations

This section introduces a number of preliminary issues, that lead 

up to the mathematical analysis of the subsequent chapter. The notation 

of Yu and Neter is introduced. In a related appendix it is demonstrated 

that the work of Cushing can be recasted into the Yu and Neter notational 

framework. This suggests that an expanded set of accounting functions 

drawn from both approaches with some additional embellishments can be 

used as a basis for modeling many i.c.ss. The various assumptions of 

statistical independence are next discussed. This is followed by a brief 

consideration of how Monte Carlo simulation might be used to derive some
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of the functional forms that are developed analytically in the next 

chapter.

4.2.1 The Use of the Yu and Neter
Notation to Develop a Combined 
Set of Accounting Procedures

Yu and Neter developed a matrix notation for describing and modi­

fying the probability of the various possible error states of documents 

as they are processed through an i.e.s. The probability for each state 

is represented as a state probability vector, such as (pi, P2 > P 3> pi*). 

The effect of a processing step is described using a transitional proba­

bility matrix A = i»j = 1»4, where p ^  is the conditional proba­

bility of state j given that the document is currently in state i. Each 

probability p . .  is a component error rate probability for a processing 

step. Using this matrix notation the ex post (to processing) state 

vector is given by

Yu and Neter illustrated their notation for several different 

types of document processing steps using four states: error free, non­

dollar errors, dollar errors and both types of errors. Thus, a document 

might be in an error free state. Or, it might contain a nondollar com­

pliance error such as a missing verification of price/quantity extensions 

which are in fact correct. Or, it might contain a dollar error that will 

affect account balances. Finally, the document could be in the fourth 

state with both types of errors.

(1)
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Yu and Neter's four state partition is one possible approach for 

including in the analysis information about nondollar compliance errors. 

Auditors generally find this information useful in making appraisals 

about possibly accompanying dollar errors. A two state (error free, 

dollar error) version of the Yu and Neter notation is used in this dis­

sertation in conjunction with a special analysis of the relationship be­

tween dollar errors and nondollar compliance errors.

Cushing examined in greater detail the error control aspects of 

an i.e.s. under the assumption of two possible states: error free and in

error. Yu and Neter assumed that all documents singled out as poten­

tially in error are correctly analyzed. Cushing assumed that new errors 

could be created within the error control process and then explored a 

variety of special types of error control procedures. While Cushing's 

analysis seems to be far removed from the work of Yu and Neter, it is 

possible to recast the Cushing analysis in the matrix notation of Yu and 

Neter (see section A1.3).

A combined set of "accounting functions" for modeling the flow of 

documents through an i.e.s. can be developed using a two state version of 

the Yu and Neter approach, a matrix notation version of the Cushing error 

control procedures, and a few additional features. Each of these ac­

counting functions is composed of several logically related processing 

steps. Each processing step is in turn defined by a transitional matrix 

such as illustrated by (1). The mathematical details of these ac­

counting functions are defined in the next chapter. There are accounting 

functions for tandem and parallel processing steps of a document, for 

merging two document flows, for consolidating two documents into a com­

posite document and for an error control analysis of documents.
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Using these functions an i.e.s. can be viewed as a directional 

network, where each node represents a state probability vector and each 

link represents one of the above document functions. Thus given perfect 

knowledge of all the probabilities embedded in each function, the auditor 

can determine the single number that represents the probability that a 

document (or accounting transaction) will emerge from the network in an 

error free state.

These functions do not consider an auditor's uncertainty about 

the nature of the probabilistic process. A given set of functions for a 

particular i.e.s. with numerically specified error rates is just one reali­

zation of the auditor's joint probability judgment for all component 

probabilities of the processing steps of the i.e.s. Auditing oriented 

functions for studying i.e.s. should recognize both the probabilistic 

nature of the process and the auditor's uncertainty about the component 

probabilities of the process.

The mathematical functions developed in the next chapter provide 

this capability. Rather than leading to a single number representing 

the probability that a transaction is an "error," these auditing func­

tions can be used to determine a p.d.f. for this error rate probability.

What one defines as an error is immaterial to the form of the 

mathematical analysis. However, it is useful to consider a document in 

error if there is information on the document that without correction 

will lead to a dollar error in an accounting transaction. For example, 

an erroneous number of overtime hours on a time card is a dollar gener­

ating error. A bridge between this definition of an error and the 

auditor's more traditional consideration of compliance errors is devel­

oped in section 4.3.
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4.2.2 Statistical Independence

The analysis of the next chapter leads to two different types of 

probability distributions each with associated questions of statistical 

dependence. At the accounting function level of Yu and Neter there could 

be statistical dependence not captured by the transitional probability 

matrix. At the auditing function level there are questions pertaining 

to the statistical dependence of the auditor’s uncertainty about the com­

ponent error rates of the accounting functions.

In a Yu and Neter type analysis it is assumed that there is 

statistical independence between the probability states of different 

transitional probability matrices. For example, given that a document
Ais in state s.. at the start of the processing step 3, the assumption im­

plies that

p (s£|sj,s*) = P(s>|s*)

where the superscripts 1, 2, and 3 indicate three tandem processing steps 

that result in states s*, s? and s£. Thus each processing step is 

assumed to be a Markovian process with a memoryless transitional matrix. 

The probability elements of this matrix depend upon the input state but 

are statistically independent of the circumstances that might lead to 

this input state.

Bodnar (1975) has discussed two aspects of this assumption.

Under his interpretation it is assumed that there are no dependent pro­

duction failures (i.e., incompetence or a faulty system design). Further 

there is an assumption of no collusion, or "people failures" as he calls 

this and other fraudulent activities. He cites and reiterates the
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viewpoint of Meister (1964) and Carmichael (1970) that this assumption 

definitely narrows the scope of such models.

No attempt is made in this dissertation to model fraudulent collu­

sion. In the opinion of the author, such an analysis would not be 

directed at the operation of an identifiable process, but rather at 

modeling the circumstance under which this process is a charade for the 

actual operation of the system. Questions of fraudulent collusion are 

concerned with identifying various possible unknown systems, not neces­

sarily with assigning probabilities to each potential system.

The analysis of the next chapter accommodates certain forms of 

statistical dependence between processing steps of an i.e.s. caused by 

production failures. This is accomplished by assuming that each (error 

rate) probability of (1) is a r.v. with a probability distribution, 

and by defining broad accounting functions that include several tandem 

processing steps. Procedures are then developed for accommodating the 

statistical dependence that may arise between the various probabilities 

within each accounting function. The analysis does not allow for statis­

tical dependence between separate accounting functions.

Within an accounting function the statistical dependence that 

might exist between two error rate r.vs. may be due to production failures 

or to the auditor's judgmental uncertainty or possibly due to both of 

these causes. Thus, even if there is no reason to expect that knowledge 

of one state influences the probability of another state, knowledge of 

the probability of the first state may affect the auditor's probability 

distribution for the probability of the second state. That is, while the 

actual probabilistic processes may not be correlated, both processes may
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be subject to the same type of environmental influences. Consequently, 

the expertise developed by the auditor in one process may be transfer­

able to the second process.

As a result of the types of statistical dependences, that are ana­

lyzed, the procedures developed in the next chapter can always be used to 

study isolated auditing functions without compromising the analysis by 

assuming statistical independence. However, these auditing functions 

generally cannot be used to study an i.e.s. for which it is imperative 

to recognize the statistical dependence that might exist between error 

rate r.vs. drawn from separate auditing functions.

In the early stages of an initial auditing engagement, when the 

auditor may have high levels of uncertainty about the reliability of an 

i.e.s., the assumption of independence between the error rates of several 

auditing functions may be unrealistic. Knowledge of a high error rate in 

one function could affect the auditor's uncertainty about error rates in 

other functions. Subsequent to this phase of the audit, exact knowledge 

of one error rate in one function is not as likely to affect the auditor's 

now less diffused uncertainty about another function. As more evidence 

is collected about an error probability one expects that the subsequent 

knowledge of the remaining uncertainty will have less of a global conse­

quence on the auditor's uncertainty about other error rates.

4.2.3 Monte Carlo Simulation

The mathematical methodology developed in the next chapter is 

based upon the moment properties of the component p.d.fs. of an i.e.s. 

Alternatively, one could derive the p.d.f. of a summary error rate r.v. 

for an i.e.s. through Monte Carlo simulation. With such a stochastic
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approach each simulated error rate is the result of first sampling all 

the component p.d.fs. once and then combining these numerical realiza­

tions into a composite error rate. With a sufficiently large number of 

generations of these composite error rates it is possible to approximate 

the composite p.d.f.

It is not clear, given current computer technology, that Monte 

Carlo simulation is an economically viable approach when extensive sensi­

tivity analysis is desired. These considerations are particularly applic­

able in an audit environment, where a mathematical model of an i.e.s. may 

act as a mechanism for exploring the implications of variations in the 

auditor's judgment of his uncertainty rather than for finding a single 

solution.

There are further difficulties with a Monte Carlo approach. Each 

particular type of component p.d.f. of a Monte Carlo simulation requires 

its own special considerations as to how it can be best sampled. In ad­

dition, unlike a moment approach, one cannot match the precision of the 

input data to the precision required of the output p.d.f. Regardless of 

these output requirements one needs a precise specification of the input 

component p.d.fs. Finally, in conducting a sensitivity analysis, each 

variation usually requires a completely new simulation.

4.3 The Relationship of Error Rates
to Traditional Measures of 
Compliance

The auditing functions developed in the next chapter are stated 

in terms of the conditional probabilities of error for individual docu­

ments of an i.e.s. These error rates give the probability that a docu­

ment initially in or not in error will leave a processing step in error.
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This formulation is not directly equivalent to the auditor's traditional 

emphasis on reviewing the i.e.s. and measuring compliance to the pre­

scribed procedures. A bridge between these two viewpoints is developed 

in this section.

4.3.1 The Internal Control
System Perspective

As discussed in S.A.S. No. 1 of the AICPA, the study and evalu­

ation of internal controls encompasses the review of the system of in­

ternal controls and tests of compliance to the prescribed methods. In 

analytically interpreting these standards Kinney (1975) draws upon the 

analysis of Cushing (1974) and focuses on the design reliability of the 

system and rate of compliance of the system with this design.

In studying the design reliability the auditor reviews the system 

to determine the possibility of errors given that there is full knowledge 

of and compliance with the prescribed methods. In studying the level of 

compliance the auditor is concerned with the degree to which the "pro­

cedures and prescribed methods . . . are in use and are operating as 

planned" (AICPA S.A.S. No. 1, §320.50).

One of the difficulties with this dichotomized analysis is to 

determine how these two measures of system performance relate to the ac­

curacy of account balances. Kinney utilized an heuristic functional 

relationship. Bailey and Jensen (1977) avoid some of these analytical 

problems by considering a binary compliance variable. While it is mean­

ingful to consider if an individual document is processed in compliance 

with the prescribed procedures, it is not clear in their analysis what it 

means to state than an i.e.s. is in or is not in compliance.
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These difficulties are avoided in this dissertation by utilizing 

the individual documents processed by the i.e.s. as the unit of analysis. 

Thus, the analysis does not consider if an i.e.s. is or is not in compli­

ance, or what the rate of compliance is for the i.e.s. Rather, the 

analysis considers for each processing step within the i.e.s. the proba­

bility that a document is in compliance with the prescribed control pro­

cedures, and the probability that it contains a defect that is or will 

lead to a dollar error. This focus on individual documents is compatible 

with the analysis of chapter 6 for integrating evidence from several 

i.c.ss. with direct evidence of errors in account balances.

4.3.2 The Document Level of Analysis

The mathematical formulation in the next chapter is based upon

probability distributions for the probability of a document leaving each

processing step in error (E). These probabilities (or error rates) are

conditional on the in error (D ) and not in error (D ) initial state ofe ne
the document when it entered the processing step. The mathematical 

formulation is thus based upon probabilities distributions for the prob­

abilities P(E|D^) and P(E|Dne). The subsequent discussion of this para­

graph relates these conditional probabilities to the design reliability 

and compliance emphasis of traditional auditing.

It is convenient to consider the following three binary states 

pertaining to a document's flow through a processing step of an accounting 

function. The document can leave the processing step in error (E) or not 

in error (~E). The processing of the document within the processing step 

can be in compliance (C), or not in compliance (~C), with the prescribed 

control procedures. And the tic marks, initials, etc., of the audit
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trail can assert that there was compliance (AC), or not assert that

there was compliance (~AC) with the prescribed procedures. Letting D

denote either D or D „ the interrelationship between these states is e ne r
given by

p (e |d ) = p (e |c ,d )p (c |d ) + p (e |~c ,d )p (~c |d ) (l)

p(c|d) = p(c|ac,d)p(ac|d) + p(c|~ac,d)p(~ac|d) (2)

The distinction made in these equations between asserted compliance and 

actual compliance emphasize the nature of the different types of evidence 

the auditor tends to collect in compliance testing. Thus a sample of tic 

marks (AC) does not necessarily imply that there was compliance. Or even 

if compliance is assured, it does imply that all errors have been detected. 

The probabilities P(CjD) and P(AC|d ) are related to the auditor’s tradi­

tional measures of compliance. The P(E|c,D) is a measure of design re­

liability.

Three aspects of the above formulation warrant special consider­

ation. First, the emphasis on individual processing steps corresponds to 

the detailed analysis of specific errors emphasized by Moriarity (1975). 

Note, however, that during the usual preliminary review of an auditor, 

where an aggregate i.e.s. perspective is adopted (e.g., the analysis of 

Kinney 1975), the total i.e.s. can be considered as a single processing 

step and analyzed using the logic of this dissertation. Then, when 

problems are encountered, the more detailed focus of the auditing func­

tions can be utilized.

Second, the auditor must specify the probability of a document 

being in error, rather than specifying an error rate for all documents
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that are processed. This latter approach is required for example by 

Kinney’s (1975) analysis. In practice the distinction may not be signifi­

cant and of interest to the auditor. In both cases, the auditor must 

recognize his uncertainty in the specified value.

Third, conditional probabilities are required in this analysis. 

Thus it is possible to make a distinction between the clerical results 

of processing a document that was initially in error or was initially 

free of error. If this distinction is not desired then the auditor can 

set P(c|De) = P(c|D^e) = P(C). With these assumptions this aspect of 

the analysis conforms to standard practice.

In a well designed system with positive assurance that asserted 

compliance is equivalent to actual compliance, it may be possible to 

assume that

P(E|C,Dne) - 0 P(C|AC,D) = 1 P(C~|AC,D) - 0 (3)

Consequently the probability of error given by (1) is just the product of 

the probability of a lack of compliance and the probability of an error 

given a lack of compliance when D = Dne
When both of these probabilities are viewed as unknown parameters 

of Bernoulli processes, a natural conjugate analysis for each probability 

leads to two separate beta distributions (Raiffa and Schlaifer 1961, p.

263). Exact and approximating distributions for the resulting product of

beta r.vs. have been studied by numerous authors under the assumption 

that the component beta distributions are statistically independent.

This literature is reviewed briefly in paragraph A2.5.4.

When a very tractable expression for the product is desired it

is suggested in this literature that the product be approximated by a
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single beta distribution with the same first two moments. However, given 

the assumption of statistical independence, the moments of a beta product 

are just the product of the beta moments. Consequently, the exact moments 

for (1) and (2 ) rather than those of an approximation can be used as in­

puts to the auditing function.

As the assumptions of (3) are progressively relaxed, the informa­

tional demands on the auditor become more cumbersome. When each proba­

bility of (1) is a r.v. with known moments, the moments of the r.v. 

p(e|d) can be found through repeated use of the binomial theorem.

Dropping the explicit display of the prior state, this yields

E[P(E)n] = 1 1  \-l)k2(,n )(nrkl)ErP(C)kl+k2P(E|C)klP(E|~C)n_kll (4) 
k x=0 k2=0 ki k2 L

When P(C) can be further decomposed using (2) it follows that 

v ki+k2ki+k2-k3 , /ki+k2\ /ki+k2-k3\p(c)k‘+k2 = I I <-i)k"
k 3=0 k*=0 \ k3 / \ k* /

• P(A)ka+klt P(C|A)ka P(C|~A)kl+kz-k3 (5)

When statistical independence exists between r.vs. equations (4) 

and (5) lead to a weighted sum of the product of the component r.v. 

moments. Evaluation procedures that can be used under conditions of 

statistical dependence are discussed in section A1.4.

The chain of conditional probabilities of (1) and (2) and the 

informational demand of (4) and (5) emphasize the relative weakness of 

assertive compliance (AC) evidence. In applying these procedures many 

of the intermediate conditional probability distributions may have to be 

specified solely using judgmental methods. The occurrence of the re­

quired conditions of the conditional probabilities may be too infrequent
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and difficult to locate to allow a statistical analysis to be con­

ducted .

In general the p.d.fs. that are associated with each auditing 

function can arise from any combination of prior or posterior audit judg­

ments and statistical test data. A general discussion of some of the 

issues involved in assessing such distributions is given by Winkler 

(1972, pp. 182-189). Felix (1976) provides a more comprehensive summary 

and gives some experimental results that focus on the Bernoulli processes 

and the beta p.d.f. Review articles by Chesley (1975) and Hogarth (1975) 

were previously cited in section 1 .2 .

4.4 Analytical Issues in the Deter­
mination of Error Rate Probability 
Distributions

In addition to the judgmental specification issues noted briefly 

in the last section, there are a number of mathematical considerations 

that arise in using the beta p.d.f. and other types of p.d.fs. to ex­

press the auditor's uncertainty about error rates,conditional probabili­

ties, etc. This section brings together a number of analytical details 

discussed in greater depth in appendix 2. The discussion considers 

first the standardized beta p.d.f. and then focuses on other types of 

p.d.fs.

4.4.1 Use of the Beta Probability 
Density Function

In most applications an auditor should be able to approximate his 

prior judgment quite adequately with a beta distribution. Weiler (1965) 

has demonstrated this robustness in a number of test cases. With mod­

erate priors (i.e., neither highly leptokurtic or extremely diffuse), and
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samples of 100 observations his plots of prior and posterior density 

functions show clearly the insensitivity of the Bayesian revision to 

the prior p.d.f. Weiler also developed several nomographs that are 

useful in establishing prior beta distributions.

Appendix 2 presents a number of properties of beta distributions 

and moments that can be used in specifying and calculating the uncer­

tainty associated with each process step. In the simplest case a pro­

cessing operation is analyzed using a prior to posterior analysis based 

upon a beta p.d.f. and binomial sample evidence (e.g., Winkler 1972, 

pp. 149-159).

Empirical error rate frequency data can be fitted to a beta p.d.f. 

using equations A2.3(12) and A2.3(13) with a = 0 and b = 1. These equa­

tions give the parameters of the beta p.d.f. in terms of the distribu­

tion's mean and variance which can be estimated from the frequency data.

If the auditor's error rate uncertainty can be specified in terms of the 

mode and variance the procedure of paragraph A2.5.1 can be used to fit a 

beta p.d.f. This analysis is a variation of the PERT approach where a 

beta distribution is specified using the distribution's mode and a per­

centile range (Malcolm, Roseboom and Clark 1959; Moder and Rodgers 1968).

A relative measure of the value of alternative prior beta 

p.d.fs. for a potential sample size is given by the information ratio 

discussed in paragraph A2.5.2. This procedure gives for two prior beta 

distributions the ratio of the expected value of the posterior variances 

for a given sample size. Using this ratio one can determine the degree 

to which two possible priors are expected to lead to similar posterior 

p.d.fs. Thus, if the information ratio indicates that the expected after
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sampling results are very similar there is little reason to linger over 

the prior assessment.

In studying the significance of an auditor's prior or posterior 

beta p.d.f. it is often useful to consider the probability mass in the 

upper tail of the distribution corresponding to higher error rates. 

Equations A2.5(ll) and A2.5(13) give two possible approximations to this 

probability. The second equation based upon an approximation by Boyd 

(1971) is very simple to use and appears to be vastly superior to the 

direct calculation of the probability. The direct approach based upon 

the definition of a beta p.d.f. often leads to numerical problems with 

the highly skewed, leptokurtic beta distributions of interest in auditing 

research.

4.A.2 Other Probability Density
Functions

When an improper or nonnatural conjugate prior p.d.f. is used 

with statistical test data of error rates the moment method discussed in 

paragraph A2.5.5 can be used to apply Bayes' law. Or alternatively a 

numerical approximation based on a discrete approximation of the prior 

p.d.f. can be used (see for example, Schlaifer 1961, pp. 194-195; Winkler 

1972, pp. 192-197). The moment method is ideally suited for prior p.d.fs. 

approximated by a lognormal distribution. In other cases it must be 

numerically feasible to calculate the higher moments of the prior distri­

bution. Using A2.2(5) and the recursive formula A2.2(l) these higher 

moments can be calculated for a prior p.d.f. approximated by an extended 

beta distribution.

Such a prior distribution could be useful when it is desirable to 

Increase the precision of a prior specification of judgment from that
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possible with a beta distribution defined on the interval [0,l]. By 

letting the upper limit vary below the standardized value of 1 the 

robustness of the beta distribution can be significantly increased. The 

procedure given in paragraph A2.3.2 can be used with a = 0 to fit the 

extended beta distribution to mean, variance and skewness effects repre­

sented by the first three noncentral moments.

4.5 Concluding Remarks

Perhaps more important than the detailed description of a mathe­

matical model is a discussion of the setting in which it can be used.

The implications of the assumptions made, the possible alternative ap­

proaches, and how the inputs can be developed are major technical aspects 

of this setting. These are, of course, difficult considerations that can 

never by completely evaluated. In this chapter these technical issues 

have been briefly explored. This preliminary evaluation should make the 

subsequent mathematical analysis of the next chapter more meaningful.

This subsequent analysis might be used to better understand an 

accounting process with or without narrowing the scope of the auditor's 

uncertainty. Or, it is possible that these techniques could act as an 

aid in making auditing decisions more efficiently. Finally, there is 

always the possibility that these procedures could even improve the 

quality of the auditor’s attestment decision. In chapter 8 , as part of 

the concluding discussion, several broader issues pertaining to the 

normative or descriptive aspects of these techniques are discussed.
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CHAPTER 5

A MATHEMATICAL ANALYSIS OF AN AUDITING MODEL 

OF AN INTERNAL CONTROL SYSTEM

5.1 Preface

The analysis in this chapter starts with a description of a set 

of accounting functions that can be used to model the processing steps 

of an i.e.s. These accounting functions are partially drawn from the 

analysis of Yu and Neter, and Cushing.

It is assumed in the third section that these functions are also 

auditing functions. Thus each error rate within each of these functions 

is a r.v. with a p.d.f. specifying the auditor's uncertainty about the 

error rate. The probability moments of these individual error rate dis­

tributions can be used to determine the summary moments of each auditing 

function. In the third section a set of moment functions are derived 

for finding these probability moments. Several special case simplifica­

tions of these moment functions are also presented.

A procedure is discussed in the fourth section for combining the 

summary moments from a series of these auditing functions. This leads 

to aggregate moments for the accumulative error rate of a series of pro­

cessing steps. When these processing steps completely define an i.e.s., 

these aggregate moments define a composite error rate p.d.f. for the 

probability of errors in the journal entries emerging from the complete 

i.e.s.
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An orthogonal polynomial procedure developed in appendix 3 can 

then be used to asymptotically determine the form of the composite error 

rate p.d.f. from the aggregate moments. The particular form of this 

asymptotic series expansion is analytically compatible with the subse­

quent analysis of account balances presented in chapter 6 .

5.2 Accounting Functions for an
Internal Control System

Using the two state version of the Yu and Neter notation dis­

cussed in paragraph 4.2.1, state vectors are represented by (P,Q) and 

(P,Q)^ the (not in error, in error) vector before and after a processing 

step. The transitional matrix is represented by

After
Processing

NE E

Before ^  /Pl qi \ NE = Not in Error
Processing „ 1 / E = In ErrorE \p 2 q2/

where the marginal notation specifies the row and column conventions 

being used. For the simplest type of accounting function composed of 

one normal processing step it follows that

<p*Q>n = (P’Q) ( Pl qi ) = (Ppi + QP2’ Pqi + Qq2)
\  P2 q2 /

In particular the error rate of the normal processing step is given by 

Qjj = (l-Q ).qi + Qq2 (1)

where P = 1 - Q.
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Table 5.2.1 presents seven accounting functions that can be used 

to model the document flow of an i.e.s. These will be subsequently dis­

cussed after defining the notation and format of this table. Capital P 

and Q are used to indicate the probabilities of the no error and in error 

states prior and subsequent to a particular accounting function. Lower 

case p and q are used to indicate the component error rate parameters for 

each process. For all subscripts i, P^ + = 1 and + q^ = 1. The

first line of each function represents symbolically how the initial 

state vector is affected by the accounting function. The second line 

defines mathematically this effect.

The OR rejoining notation of functions (d) and (e) indicate that 

a single document is being formed out of two separate documents. Conse­

quently the new document is in error if there is an error in either of 

the component documents. Alternatively this process can be considered 

as the formation of a not in error document according to AND logic.

Both documents must be correct for the composite document to be correct.

Accounting functions (a), (c), (d) are directly equivalent in a 

two state model to the functions given by Yu and Neter. They describe 

the modification to the error probability vector caused by normal pro­

cessing of documents, the accumulation of documents from two sources and 

the consolidation of two documents into a new composite document.

Functions (b), (e) and (f) are embellishments to the Yu and Neter 

system that are useful in an auditing environment. Function (b) ex­

presses two processing steps as a single accounting function. This func­

tion can be used to accommodate the statistical dependence that might 

exist between the component r.vs. of two normal processing functions 

(i.e., type a) operating in tandem. Function (e) accommodates the
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Table 5.2.1

Accounting Functions for Modeling Internal Control Systems

(a) Normal Processing of a Document

/ pi qi\
(P,Q) ( ) -► (P,Q),

\ P2 12/ N

/Pi li\ 

\P 2 1 2 /
(P,Q)k = (P,Q) ( 1 = (PP1+QP2, Pqi+Qq2)

(b) Tandem Processing of a Document

/ pi qi\ / P3 i3\ / p q \
(p ,q ) *  f ) ) -  (p ,q )t ~ (P,Q) ( j = (P,Q)

\ P 2 q2 / \pi* q<* / \ p  q / T

/ p q \  / P i q i x / P s i s x  / PiPa+qiP*. Piq3+qiq*»\

\ P q / t  \P2 12/ \ Pi* In/ V P2P3+l2P>. P2l3+ q2lit/

(c) Weighted Average Merging of Document Flows 

(Pi.Qi)'^wi
-»■ (P>Q) w Wl + W 2 = 1

(P2 ,Q2> ^  «2

(P,Q)^ = wi(l-Qi,Qi) + W 2 (1-Q2 ,Q2) = [l-(w1Q1+w2Q2), wjQi + W2Q2]

(d) OR Rejoining of Two Documents

0R Error->(P,Q)R

(P,Q)r = [(1—Q1)(I-Q2)» 1 - (1—Q 1)(I-Q2)] = C<1—Q1)(I-Q2)»

(Pi.Qi)

(P2,Q2)

Q i + Q2 - Q1Q2]
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Table 5.2.1 (continued)

(e) Parallel Processing with OR Rejoining of Errors

Letting H  symbolize OR logic for the error states this processing 
step can be written

= (Pp1+Qp2 ,Pqj+Qq2) O  (Pp3+Qpl|,Pq3-K}qIt)

Q p = [0 ?q,-Klq2) + (Pqa+Qq,)]" (pqfK3q2)

P p = (PPI'K}P2)(PP3'HW

(f) Alternative Processing of a Document

(P»Q)p = (P,Q)
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Table 5.2.1 (continued)

(P,Q)a  = (P,Q)
/Pi qi\ /P3 q3

Wl I j +  W2l
\ P2 q2 / \ p<« q>*

=  [P (w ip i+ W 2 P 3 )  +  Q ( w iP 2+w2ptf ) ,  P ( w ! q i+ w 2q 3 )  +  0 ( w i q 2+w2q i* ) ]

(g) Error Control Processing

No
Error

Analysis
Normal 

Error Analysis
Special 

Error Analysis
P7

(P»Q)

/PI 0 \ /qi 0 \ /P3 q3 \ /qi 0 \ /I 0\

\  0  q 2 /  \  0 P2/  \  p<* qi*/ ' 0  p 2 /  \  1 0 /
(P»Q),

Process 
Adjustment

(P,Q)e = (P,Q)
/pi+qiP3+qi qiq3 \

M H I' \P 6 qe/.P7
\P2pi»-*;P2 q2+P2q«f

[P(p7(pi+qiP3+qi)+q7ps) + Q('p7(p2Pi*+P2)+q7P6)»

P(p7qiq3+q7qs) + Q(i?7(q2+P2q<*)+q7q6)]
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statistical dependence created when duplicate copies of a document are 

subject to separate processing and then rejoined. Function (f) can be 

used when certain documents are given special handling. For large dollar 

amounts this function might be applied with q3 — qi» =® 0 .

Function (g) is an extension of the Yu and Neter error control 

processing for more elaborate types of processing. In this function the 

probability P7 can be used to explicitly recognize less than 1 0 0% compli­

ance to an error control step. The possibility that a lack of compliance 

may influence the accuracy of previous processing step(s) can be accommo­

dated using the process adjustment matrix of (g). Scenarios can easily 

be developed where the surreptitious deletion of a control step increases 

or decreases the care exercised in implementing previous processing steps. 

For example, qs = .03, q6 = 1 implies that the error rate for correct 

documents should be reduced by 3%.

With q7 = qi = P2 = 0 (g) reduces to the Yu and Neter form of 

error control processing. With q7 = qi = i>2 = 0, (g) represents the 

basic error control configuration of Cushing. The normal and special 

error control feature of (g) accommodates special documents that are 

given extra care in error checking.

Functions (a) through (e) include all aspects of the Yu and Neter 

system for describing an i.e.s. There are, however, several refinements 

of the Cushing system that cannot be represented by (g). In particular, 

there is the possibility of expanding (g) or of creating another function 

that focuses on the feedback error controls of the Cushing system. As 

represented in (g) all documents are sent forward to the next processing 

step after error processing.
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5.3 Auditing Functions and
Their Moments

When each of the error rates of the accounting functions of table

5.2.1 is assumed to be an uncertain value of concern to the auditor, 

these same accounting functions can be considered as auditing functions 

composed of algebraic functions of r.vs. Now when several such functions 

are linked together to describe the flow of documents through an i.e.s. 

an extremely complex problem arises in determining the probability dis­

tribution of the summary error rate r.v. The approach taken in this 

dissertation to this problem is to determine the probability moments for 

each of the auditing functions of table 5.2.1.* These moments are then 

consolidated into summary moments for the error rate of a complete i.e.s.

Using the binomial theorem, the probability moments for an error 

rate r.v. emerging from an auditing function can be expressed in terms of 

the moments of the component r.vs. of the function and the moments of the 

initial error rate. For example, under auditing conditions equation 

5.2(1) becomes

0N = (l-Q)qi + Qiz

*The general problem of collapsing into a summary distribution 
a complex algebraic function of continuous r.vs. can be approached in 
several alternative ways. Heck and Tung (1962) discussed an empirical 
approach that sequentially combines discrete interval approximations 
for the known component p.d.fs. Abraham and Prasad (1969) and Prasad 
(1970) have developed a combined Mellen/Laplace transformation procedure. 
Neither of these approaches appear to have led to any subsequent pub­
lished comments. They do not appear easy to implement or computationally 
efficient. Neither gives results that can be immediately translated into 
a p.d.f. for the summary r.v. Another approach due to King, Sampson and 
Simms (1975) -is very tractable, but it is based upon a very restrictive 
p.d.f. model of the component r.vs.
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where the •» signs have been added to emphasize the r.v. nature of the 

identity. By repeated use of the binomial theorem the moments of can
be calculated. Thus:

E « fi)  = E (C l-Q )q i +  Qqz)n = I (" )  E ( ( l -Q )n" i q?"i Q1q2)
i=0

= I T (-i)n"1''j <?)<n:i)Y (1)
i=0 j=0 1 3

where all expectations are with respect to the joint p.d.f. of (Q,qi,q2)> 

and as a result of the assumption of statistical independence discussed 

in paragraph 4.2.2

1 ’ EQ,q.,q2<Qn~J<ir“ ) = (2)

If the r.vs. qi and q2 are statistically independent then

E = E E and (2) can be easily calculated. Otherwise the pro-qiq2 qi q2
cedures suggested in A1.4 could be used to approximate the form of de­

pendence that may exist between r.vs. qj and q2.

Table 5.3.1 develops expressions for the probability moments of 

each output error rate r.v. of table 5.2.1. While somewhat tedious the 

analysis completely parallels the discussion and conclusions represented 

by (1) and (2). A more condensed expected value notation has been used 

without the r.v. subscripts used in (2).

The assumptions of statistical independence discussed in para­

graph 4.2.2 are assumed throughout this analysis. If it is further 

assumed that the statistical processes that generate the component error 

rates of each auditing function are statistically independent, then the 

moments of the component error rate r.vs. can be used to evaluate the
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joint moments of equations (3) through (11) of table 5.3.1. As previ­

ously noted, section A1.4 discusses possible models for incorporating 

statistical correlation between component r.vs. when independence cannot 
be assumed.

Function (e) for parallel processing with OR logic rejoining can 

lead to some computational difficulties. From (8) of table 5.3.1 it 

follows that in order to determine E(Qp) it is necessary to know ECQ1) 

for i = 1,..., 2n. Thus, at all previous processing steps twice as many 

moments must be calculated as is intended to be used in the final moment 

approximation for the p.d.f. of the aggregate error rate. One possible 

approximation that avoids this difficulty is to fit a four parameter beta 

distribution to the input error rate r.v. using E(QX) i = 1,2,3,4, as 

discussed in paragraph A2.3.4. Assuming that the input random variable 

is unimodal, the higher moments of the fitted distribution given in para­

graph A2.2.2 may be a tolerable approximation for the unknown moments.

While the notation of these moment functions is tedious, the 

empirical calculation of moments is straightforward using nested 

FORTRAN 'DO LOOPS.' The binomial coefficients for n < 20 given in table

5.3.2 can be input to a computer program as a two dimension array. As 

seen from table 5.3.3 functions (b), (e), (f) and (g) generate a large 

number of terms. However, the equations can be considerably simplified 

when it can be assumed that some of the component error rates do not 

significantly differ from zero.
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Table 5.3.1

Moment Functions for Internal Control Systems

(a) Normal Processing of a Document

E(Q!J) = E((Pqj+Qq2)n) = E( I (?) ( l - Q ^ ' V ' V q f )
W i=0

“ I Xi(-l)J(J)(nTi)E(Qlt3)E(qriq2) (3)
i=0 j=0 2

(b) Tandem Processing of a Document

e (q £) = e [((i-q ) (Piq3 +  qiqit) +  Q(P2q3 +  q2qif) )n 3

= 1 ^ 1  E[Qi+j(Plq3 + qiq!,)11"1 (p2q3+q2qIt)1 ](4)
i=0 j= 0 1 2

n n-i n-i n-i-k i i-m . m
= 1 1 1  I I I  <-x)J+11+r <5)

i=0 j=0 k=0 SL-0 m=0 r=0

• <i> < v >  o  r r k) o  (ir >  e ( q U 3  >e (oi+k<i2'tai r k'nq ^ )

Note that the derivation of (4) and (5) is just a repetition of 
(3) with changes of notation.

(c) Weighted Average Merging of Document Flows

E « 0  = E((wiQi+w2Q2)n) = I ( J j v r M E C Q r M )  (6 )
V  i=0

(d) OR Rejoining of Two Documents

E(Qp) = E((Qi+Q2-QiQ2)n) = f (-l)i(")E((Q1+Q2)n' V Q 2)
R i= 0

i^/nW n“^  W n ? “3n*+^  (7)l i (-i)1 0 (n:1)E(Qr jQ r j)
i= 0 j= 0 J
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Table 5.3.1 (continued)

(e) Parallel Processing with OR Rejoining 

E<Qnp>

= E[((Pq1+Qq2)+(Pq3+Qqi,)-(Pqi+Qq2) (Pqa+QqO)"]

n _ • • •
= I  ( - l ) 1(^)E[((Pqx-H)q2)+(Pq3-H)qI, ) ) n Vqi+Q qz) *(Pq 3-KJqO *3 

i=0 1

= 1 1  (-l)i(?)(nT1)E[(Pqi-K)q2)n“J(Pq3-Hlq014:3] 
i=0 j=0 1 3

n n-i n-j i+j . . . ,.
= (-i)1 (j)(n:1)'(n"J)(1J3)E(Y)■? =n 4=n v=n o-n ± J *

where E (Y ) =

Now E[<l-Q)n+I'k* V +)l3 - ”+1[k ^(-l)m Cn "̂1”k_^)E(Qk+^+m)
m=0 m

Thus E(Qp)

r nr* nr^ ̂  n+ r̂.̂  \  , .. i+m,n, /n-i. ,n-j« ,i+j.. ,n+i-k-£.
= I I I I 1 (-1) U ( i )( k )( £ )( m >

i=0 j=0 k=0 1=0 m=0 3

n-j-k k i+i-5. £* /Qw
• E(Q )E (q i J q2q 3 J qi,) (8 )

(f) Alternative Processing of a Document

E(Q”)

E[(P(wiqx+M2q3) + Q(wiq24w2 qi»))n]
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Table 5.3.1 (continued)

j (”)E[(1-Q)n 1(wiqi+M2q3)n ^(wiqrK^qi,)1] 
i=0 1
n n-i n-i i

= 1 1 1 1  (-i)39 ( n: ^ ( nj1)(i)w?-k-£ m
i=0 j=0 k=0 1-0 1 J k * w i "2

n-i-k i-Z k JL• E(Q )E(qi q2 q3qi*) ( 9 )

(g) Error Control Processing

E(Q")

= E[(P(p7qiq3+q7qs)+Q(p?(q2+P2qif)+q ,q6))n]

= 1 0(i-Q)n‘1(P7qiq3+q7qs)n"iQ:L(P7(q2+P2qO+q7q6):l i=0
n n-i n-i i . . . .

= l l I I
i=0 j=0 k=0 Z=0 1 J

• E[Q1+^]E[(l-q7)n“k”J'q7+k(qiq3)n_:L"kqs(q2+P2q‘*):L q̂f]

„ .n-k-fc n r ^, ..m.n-k-L mNow (l-q7) = I (-1) ( )q7 andm=0

(q2+P2qi») = 2. 2q2 P2qii
r=0

Thus E(Qg)

n n-i n-i i n-k-5, i-£ .. . . . ^ . 0 . 0
. j i l i  i j < - i ) ^ < " h “: V ; ; X h  I T ) ( r >1=0 j=0 k=0 A=0 m=0 r=0 1 J m
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Table 5.3.1 (continued)

. t,/ni+jM,/ Jl+k-tao n-i-k i-Jl-r n-i-k r k i r .• E(Q J)E(q7 qi q2 q3 q^qsqePz) (10)

When p2 = 0 and hence p2 = 1 - q2 , equation (8) expands to 

E(Q“)

n n-i n-i i n-k-5, i-Z r ... . . , „
-  i  i  i i i i i  ( - i ) J ^ ( X r > < n' X > ( n1 ;  >i=0 j=0 k=0 S,=0 m=0 r=0 s=0 1 1 k

,1-Z. ,rN r./r>i+j\T7/ A+k+m n-i-k i-£-r+s n-i-k r k I  ( r )(s) E(Q J)E(q7 qi q2 q3 qitqsqe) (H)
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Table 5.3.3 
Number of Terms for Each Moment Function

Order of 
Moment for 
Function A,D B C E F G(X0) G (u)

1 3 9 2 14 6 11 13

2 6 42 3 77 20 58 79

3 10 140 4 273 50 210 324

4 15 378 5 748 105 602 1038

5 21 882 6 1729 196 1470 2802

6 28 1848 7 3542 336 3192 6666

7 36 3564 8 6630 540 6336 14388

8 45 6435 9 11571 825 11715 28743

9 55 11011 10 19096 1210 20449 53911

10 66 18018 11 30107 1716 34034 95953
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5.4 Simplifications for the
Moment Functions

Table 5.4.1 presents optional rules for simplifying the moment 

functions of table 5.3.1 when particular error rates are zero with prob­

ability one. These rules may be particularly useful in an extensive 

sensitivity analysis. When computation inefficiencies can be tolerated 

the formulas given in table 5.3.1 can be used without these simplifications 

provided the convention 0° = 0 is adopted. The results given in table

5.4.1 follow from the derivations for the moment functions given in table 

5.3.1. The use of the table is best explained with an example.

For error control processing function (g) assume that q3 = qs 

= 0. The assumption q 3 = 0 implies that there is no possibility that 

a "not in error" document will be incorrectly processed by the error 

control step. The assumption qs = 0 implies that a lack of compliance 

will not increase the probability of an error. Thus, the bypassing of 

a subsequent error control step does not adversely affect the processing 

of documents.

From (g) of table 5.4.1 it is seen that q3 = 0 implies that

k = n - i and that qs = 0 implies that k = 0. It follows that k = n -i

= 0 or i = n. Thus, qa = qs = 0 implies i = n, k = 0. Note that the

joint entry for q3 = q5 = 0 also indicates that j = 0. With i = n the

range of summation of j collapses to j = 0. In general if a joint entry 

exists in the table it should be used, since there are several cases 

where the joint entry cannot be derived from the component entries. If 

there is not a joint entry then the component entries completely specify 

the possible simplifications.
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Table 5.4.1 

Special Case Rules for Moment Functions

(a) Normal Processing of a Document
For Set Index For Set Index
qi=0 i=n, j=0 q2=0 i=Q

(b) Tandem Processing of a Document
For Set Index For Set Index
qi=0 k=0, £=0 q2=0 m=i, r=0

q3=0 k=n=i, £=0 qi»=0 k=0, m=0
m=i, r=0

For Set Index 
Q=0 i=j=0

For
qi=q3=0

q2=qlt=0

Q=0

Set Index
i=m=n
j=k=£=r=0
k=m=r=0

i=j=m=r=0

(c) Weighted Average Merging of Document Flows 
For Set Index For Set Index 
Qi=0 i=n Q2=0 i=0

(d) OR Rejoining of Two Documents
For Set Index For Set Index
Qi=0 i=0, j=n Q2=0 i=j=0

(e) Parallel Processing with OR Rejoining 
For Set Index For Set Index
qi=o
q3=0

k - n - i
AFi+j

q2=0
qi»=0

k=0
£=0

( f ) Alternative Processing of a Document 
For Set Index For Set Index
qi=0
q2=0

k=n-i q3=0
qi»=0

k=0
£=0

(g) Error Control Processing 
Set Index For

For
qi=q2=0
q3=qi*=0
Q=0

For
qi=q3=0
q2=qii=0
Q=0

Set Index
i=k=0, j=n
i=j=£=0
k=£=m=0

For
q7=0
q3=0
q6=0
q2=p2=0
q2=P2-q6=0
q2=qi*=<̂ =0
qi=q5=0
q3=q5=0

k=£=m=0
k=n-i
£=0
r=s=0, £=i
i=£=r=s=0
i=£=r=0
j=k=0,i=n
j=k=0,i=n

qi=0
qi*=0
P2=0
q2=qi*=0 
q2=p2=q7=0 
q2=qi*=q7=0 
qi=q7=0 
q 3=q7=o

Set Index
k=n-i
r=0
r=s=0
r=s=0, £=i
i=k=£=m=r=s=0
i=k=£=m=r=0
k=£=m=0,i=n
k=£=m=0,i=n

Set Index
i=n, j=k=0 
i=£=0 
i=j=£=0

For Set Index
q2=0
qs=0
Q=0

r=i-£
k=0
i=j=£=r=0
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Continuing with the example, for fixed index values of i = n and 

j = k = 0 equation (11) of table 5.3.1 reduces to:

Another type of simplification is possible when a series of 

tandem processing steps conforms to the series configuration of relia­

bility theory. For example, if in table 5.2.1 for (b) it happens that 

q2 = qi, = 1 it is easily shown that

Setting these parameters to one implies that it is not possible for any 

existing errors to be corrected during the tandem processing steps.

Now when qi and q3 are independent standardized beta distribu­

tions, (1-qi) and (l-q3) are also beta distributed with the beta param­

eters p and q switched. Thus (l-qi)(l-q3) is a product of independent 

beta distributions, a configuration that has been extensively studied. 

Paragraph A2.5.4 briefly reviews this literature and the conclusion of 

several authors that a product of beta distributions can be reasonably 

approximated by a standardized beta distribution with the same first two 

moments as the product. Since the r.vs. are assumed to be independent 

these two moments are just the product of the component moments each of 

which can be calculated using A2.2(l).

The parameters of the approximating beta p.d.f. are then deter­

mined using the technique discussed in paragraph A2.3.3. Switching the

£.=0 m=0 r=0 s=0

• E(Qn)E(q

( l - q i ) ( l - q 3) 

0
(13)
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parameters of the approximation now yields a beta distribution for 

1 - (1-qj)(l-q3). Thus rather than evaluating 5.3(5) of table 5.3.1 

with q2 = qi* = 1 the corresponding moments can be determined using (13). 

The required moments of the approximating beta p.d.f. are found using 

equation A2.2(l).

The procedure generalizes in an identical manner to k tandem 

processing steps in series with q2 = q«» = ... = q2jc = 1. For this case 

the distribution of the r.v. 1 - (1-qi)...(1-q , ) is approximated by a

beta p.d.f. In spite of the attractiveness of this procedure, it should 

be realized that to date there have been assertions, but there is no 

published documentation of the robustness of the approximation for the 

low error rate, highly leptokurtic beta distributions encountered in an 

auditing model.

The above beta p.d.f. approximation can also be used with par­

allel processing function (e) of table 5.2.1. For this case when 

P2 = P<* = 0 it follows that Pp = P2pip3 and hence

Qp = 1 - Pp = 1 - (l-Q)2(l-qi)(l-q3).

In general for k parallel processing steps without the possibility of 

correcting prior errors

Qp = i - (i-Q)k (i-qi)(i-q3) ... d - q ^ )

Now when qi, q3,..., q^.^ are aii beta r.vs., the r.v. (l-qi)(l-q3)

... x) can be approximated by a beta r.v. Thus rather than

evaluating 5.3(8) of table 5.3.1, it follows that the ntk moment is 

given by
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where represents the approximating beta r.v.

5.5 Consolidated Internal Control
System Moments and Their Use

In the previous two sections a set of auditing functions have 

been defined, and formulas have been derived for calculating summary 

moments for each function. A method for aggregating the summary moments 

from a series of auditing functions from an i.e.s. is now considered.

As mentioned in paragraph 4.2.1 an i.e.s. can be viewed as a 

directed network which passes vectors of probabilities from node to node. 

In this conceptualization each intermediate link between nodes represents 

an accounting function that operates on the vectors. It is discussed in 

this section how this network structure carries over to the probability 

moments when each link represents an auditing function. This network 

structure allows the probability moments of a series of auditing func­

tions or a complete i.e.s. to be iteratively calculated using the moment 

functions of table 5.3.1.

While it would be an unbearably complex task to write out an 

algebraic expression for the aggregate moments of a series of auditing 

functions a recursive numerical procedure is quite straightword. Thus, 

for example equations 5.3(1) and 5.3(2) give the moments of the output 

error rate r.v. as a function of the input moments and the processing 

step moments. These output error state moments can now be used as input 

moments for the moment function of the next auditing function. Starting 

with the input documents of an i.e.s. a series of moment functions taken
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from table 5.3.1 can be used to progressively determine the moments of 

the aggregate error rate r.v. of the i.e.s.

Since these functions can be preprogrammed in subroutine form 

this recursive procedure is ideally suited for computer evaluation. In 

application the auditor must describe the document flow network to be 

analyzed, the auditing functions used for each link, and the moments of 

the p.d.fs. of the component r.vs. that make up each auditing function. 

Now through a recursive evaluation the moments associated with the aggre­

gate error rate r.v. can be determined. In the next chapter it is dis­

cussed how these moments can be used to develop an orthogonal polynomial 

approximation to the p.d.f. of the aggregate error rate the moments 

represent.

The recursive structure of the analysis can be used to reduce 

the amount of empirical evaluations necessary when conducting a sensi­

tivity analysis. This is useful in studying the implications of vari­

ations in the auditor’s judgments or the value of potential sample 

evidence. Thus, if all the intermediate moments are saved during the 

initial processing, a given sensitivity analysis need not recalculate 

the intermediate moments prior to the first source of variation.

5.6 Concluding Remarks

The moment functions of table 5.3.1 can be used to completely 

model an i.e.s. or to analyze areas of weakness within specific i.c.ss. 

When a complete analysis is desired it is assumed that the auditor has 

conducted a comprehensive review of the system of internal controls.

Thus, it is assumed that the auditor can develop and test for compliance 

a flow chart of each i.e.s. being modeled. Beside providing a documen­

tary basis for the usual checklists and questionnaires, a flowchart can
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clearly show the processing steps applied to each document. This is 

essential if the methods of this chapter are to be used to model an i.e.s.

When the moment procedures are used to analyze areas of weakness 

within i.c.ss. these same requirements apply to each weakness. Rather 

than examining all possible error generating situations this application 

only focuses on those error situations that the auditor considers poten­

tially critical. It is assumed that there is no value in compounding the

analysis by considering secondary errors that are assumed to be subse­

quently identified and corrected. When independent control totals, serial 

number controls, etc., lead to well documented and verified error control 

procedures these assumptions seem reasonable. Chapter 7 develops an ex­

ample which illustrates this approach.

The number of process functions needed to describe a particular 

area of weakness is very much a function of the type of i.e.s. and the 

experience of the personnel involved. An experienced payroll clerk may 

occasionally be able to identify unauthorized overtime amounts not

screened out by line supervisors, but a price or quantity error of an in­

voice may not be subject to the same informal review. Thus, in a payroll 

application with weak controls over overtime hours it may be useful to 

include an auditing function for representing the payroll clerk’s infor­

mal review of time cards.

When numerous processing steps have a bearing on an error rate 

the auditor may wish to reduce the data specification requirements of the 

analysis by utilizing point estimates for particular component probabil­

ities of an auditing function. There are no logical constraints on 

intermixing point and probabilistic estimates for the error rates of the
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moment functions. The arbitrariness of this approach can be somewhat 

mitigated by conducting a sensitivity analysis of the implications on 

final account balances of variation in the parameter used.
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CHAPTER 6

THE INTEGRATION OF INTERNAL CONTROL SYSTEM AND 

ACCOUNT BALANCE EVIDENCE

6.1 Preface

In the previous chapters procedures were developed for repre­

senting the auditor’s uncertainty about the reliability of each pro­

cessing step in a repetitive document flow. It also was shown how these 

component judgments could be consolidated into a summary judgment of the 

auditor's uncertainty about journal entry error rates. This chapter dis­

cusses in general terms the problem of integrating this error rate infor­

mation with error size information when several i.c.ss. and account 

balances are involved. Chapter 7 illustrates how the material of this 

and the previous chapter can be integrated with current auditing prac­

tice.

As defined in section 1.3, an i.e.s. is a set of processing 

steps which lead to or may potentially lead to journal entries.

As a further qualification it was assumed that the a priori probability 

distribution for an error in a randomly selected document of the i.e.s. 

is constant. For example, if large dollar items are processed with 

extra care and therefore have different error probabilities, then they 

should be considered as part of a separate i.e.s. In general, if the 

auditor believes that documents processed at a particular location or 

for a particular set of customers or with particular dollar amounts are
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exposed to different risk levels, then the processing of these documents 

should define a logically separate i.e.s.

The problem considered in this chapter is how all these indi­

vidual i.e.s. journal entry error rates can be consolidated with dollar 

error size information into an aggregate measure of error amount uncer­

tainty for a particular set of accounts. This analysis corresponds to 

the error amount determination and error amount consolidation modules of 

figure 1.5.2.

As a consequence of the previous chapter's discussion it is 

assumed that the lower order moments are available for the p.d.f. of 

each i.e.s.'s composite dollar error rate. If through an i.e.s. 

branching operation more than one type of transaction is generated by an 

i.e.s., it is assumed that these moments are available for each trans­

action’s error rate.

The general form these transactions might take in a merchandising 

firm is conveniently summarized by Arens and Loebbecke (1976, pp. 232, 

407,436 and 409) using T-accounts. The illustrations of these authors 

summarize the transaction flows of a sales and collection cycle, a pay­

roll and personnel cycle, an acquisition and payment cycle and an inven­

tory and warehousing cycle. Each of these cycles encompass one or more 

i.e.s. as the term has been defined in this section. While many of the 

transactions illustrated by Arens and Loebbecke rarely would require a 

statistical analysis, the elementary T-account diagrams of these authors 

are a convenient starting point for an analysis.

For the repetitive transactions that are usually subject to 

statistical analysis it is to be expected that an error in one account 

is offset by a single error of equal magnitude in one offsetting account.
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More complex offsetting structures can be accommodated by using a 

weighting function to divide the error offset over several accounts.

While the subsequent analysis assumes a single offset, the more general 

case can be easily worked out using parallel logic. It would even be 

possible to assume that the weighting coefficient is an r.v.

6.2 The Composition of Error Rate
and Error Size Uncertainty 
for a Single Error Type

The first step in bringing together all the error information 

affecting accounts is to consolidate the rate and size information for 

each particular type of error. It is assumed that the auditor is con­

cerned with a low error rate environment and has dichotomized his 

informed judgment and sample evidence into rate and size evidence.

6.2.1 The Beta-Normal Procedure

These assumptions are discussed by Felix and Grimlund (1977).

They give a general procedure for consolidating a transaction error rate 

p.d.f. with error size information that leads to a total error amount 

probability distribution. As a result of the special form of this dis­

tribution (see A4.1(l)) it is called a beta-normal distribution by 

Felix and Grimlund.

The beta-normal procedure assumes that a standardized beta p.d.f. 

describes the auditor's uncertainty about possible values of the error 

rate. It is also assumed that a normal-gamma 2 p.d.f. describes the 

auditor's uncertainty about the mean and precision of a normal p.d.f. 

for possible values of the size of identified errors (see also, Raiffa 

and Schlaifer 1961, pp. 298-303; Winkler 1972, pp. 181-182). The beta- 

normal procedure combines these sources of evidence into a marginal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

87

distribution for the total error in an account due to a particular type 

of transaction error.

In sampling the transactions of an i.e.s. for error rates, the 

size of the identified errors can be used as secondary observations of 

the assumed normal process for error size. After prior to posterior 

updating of the rate and size samples the two types of information are 

then combined using the beta-normal procedure. This approach avoids a 

number of mathematical difficulties that otherwise arise when the error 

rates are very small. Appendix 4 summarizes these issues and the mathe­

matics of the beta-normal distribution. The appendix also develops sev­

eral new analytical properties of the distribution not given by Felix and 

Grimlund.

The analysis of error rates and their implications on account 

balances need not be restricted to observable ex post errors. In using 

the beta-normal procedure an "error" can be defined as for example a 

potential credit default or inventory item write down. Thus, the auditor 

may find it convenient to analyze the implications of these "errors" 

using the same error rate and error size decomposition useful for process 

errors. In these cases, sampling the population leads to estimates of 

future events rather than observations of past events. These techniques 

will be illustrated in chapter 7.

The Bayesian emphasis of the beta-normal procedure allows the 

auditor to capture his informed judgment resulting from his review of 

internal controls, his cradle to grave examination of transactions, etc. 

The beta-normal procedure is also analytically compatible with the anal­

ysis of i.e.s. error rates discussed in chapters 4 and 5. This analysis
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showed how the noncentral moments for an unknown summary error rate p.d.f. 

could be found.

While these moments are incompatible with the beta-normal require­

ments, they can be used to develop a mixture or weighted average of 

standardized beta p.d.fs. that is compatible with the beta-normal anal­

ysis. This translation is based upon a truncated form of a Jacobi poly­

nomial orthogonal expansion.

distribution are well known. The possibility of using a beta distribu­

tion rather than a normal distribution has been recognized in the liter­

ature, but has not been explored in any depth. Appendix 3 reviews these 

issues and develops new procedures for using a Jacobi expansion based 

upon beta functions.

sion based upon a mixture of beta p.d.fs. This mixture of standardized 

beta distributions defined by A3.4(19) with a = 0, b = 1 can be expressed 

as

Thus f(p) is an error rate p.d.f. given by the indicated weightings of 

beta p.d.fs. It follows from A4.1(l) that the p.d.f. for the total error 

amount r.v., tt̂ ,, can be expressed as

Such orthogonal expansions for a p.d.f. based upon the normal

Paragraph A3.4.4 discusses a truncated form of the Jacobi expan-

n
f(P) = I w fR (p) 

i=l 1 pi
(1)

f (P) f M 0 U  | ap, 1/bp) dp

n
(2)
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where f is a normal p.d.f. with mean ap and precision 1/bp and fD XT is 

a beta-normal p.d.f.

Thus, the mixture of beta p.d.fs. is used in place of the usual 

single beta p.d.f. given by Felix and Grimlund (1977). The resulting 

total error amount p.d.f. is then the same mixture or weighted average of 

component beta-normal p.d.fs. Also, from (1) it immediately follows that 

the noncentral moments of the total error amount p.d.f. are given by 

n
K  = I wiUr(M )  (3)r i=l 1 1

In summary, these simple steps used in conjunction with the 

Jacobi expansion procedures of appendix 3 extend the range of the beta- 

normal procedure to any error rate p.d.f. for which probability moments 

can be calculated.

6.2.2 Alternatives to the Beta-
Normal Procedure

One of the shortcomings with the beta-normal procedure is the as­

sumption that error sizes are normally distributed. Appendix 5 develops 

an alternative Poisson-gamma model for the composition of error frequency 

and size information. A natural conjugate joint density for the skewness 

and scale parameter^ of the gamma error size process is determined and
j
)

used to develop several possible forms of the total error amount distri- 

bution.

These procedures are found to be analytically less convenient 
than those of the beta-normal distribution. In particular the integrals 

for the noncentral moments are not tractable. The natural conjugate dis­
tribution also appears to be somewhat difficult to use. However, the 
distribution appears to have not been previously discussed in the liter­
ature, and its properties could be investigated further.
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The Poisson error frequency distribution of the Poisson-gamma 

model is incompatible with the Jacobi expansion technique. However, the 

gamma distribution procedure for error sizes could be used in conjunc­

tion with a beta distribution or Jacobi expansion for error rates.

This possibility combines the attractive features of the beta distri­

bution with the skewness potential of a gamma distribution.

Such a "beta-gamma" model can be developed using equation 

A5.5(5). This p.d.f., f(ir̂ ,|r), expresses the total error amount uncer­

tainty for the r.v. ^  given that r errors have occurred. Following 

the Felix and Grimlund discussion the approximation r = XP is then 

used (where X is the number of transactions and p is the unknown error 

rate). It follows that the total error p.d.f. is given by

f(FT) = fg < P )f(*T IXP)dP <*)

where fg(p) is either an error rate beta p.d.f. or the mixtures of beta 

p.d.fs. defined by (1). Equation (4) is deceptively simple. From 

A5.5(5) it can be seen that (4) is an improper double integral with a 

very cumbersome integrand.- These computation difficulties limit the 

attractiveness of the beta-gamma approach.

6.2.3 The Transition from Transaction
to Subsidiary Account Testing

In sampling for the error rates and error sizes of the beta- 

normal procedure it is possible that the auditor may wish to shift the 

sample population from transactions to subsidiary accounts. Thus, if the 

auditor's evaluation of internal controls and tests of transactions 

indicates significant error rates he may wish to proceed with direct
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tests of balances. This change of tactics requires that existing error 

rate and error size information be respecified in terms of the new 

metric.

In order to accommodate these requirements it is assumed that 

the subsidiary account error rate in a direct test of balances is given 

by the r.v.

PA = (NT/NA)pT (5)

where N̂ ,, NA and p̂ , are respectively the number of transactions, the 

number of accounts and the transaction error rate r.v. In using (5) 

care must be exercised in matching up the definition of a subsidiary 

account error with the number of transactions that might cause this 

error. Thus, if designated errors in subsidiary balances can result from 

transactions occurring in earlier years, the auditor must assure himself 

that the transaction error rate previously developed is representative 

of this time frame.

If the p.d.f. of the r.v. p^ is specified by its noncentral 

moments as discussed in chapter 4, then the noncentral moments of PA 

can be immediately determined. If the p.d.f. of is or has been ap­

proximated by a standardized beta distribution then the p.d.f. of PA 

will be an extended beta distribution (see section A2.1) defined on 

[0, NT/NA]. In both cases the subsequent prior to posterior analysis 

for Bernoulli sampling of subsidiary accounts cannot be based upon 

natural conjugate relationships. When the moments of PA can be conven­

iently calculated, the procedure given in paragraph A2.5.5 can be used 

to find posterior moments from prior moments and sample information.
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Another possibility is to fit a standardized beta distribution using 

A2.3(12)/(13) to the prior mean and variance and proceed with a natural 

conjugate analysis.

A routine procedure can be developed for shifting the focus of 

analysis from transaction error size to subsidiary account error size, 

when it is assumed that

\ = <VNA)ffT (6)
where tt̂  and are r.vs. expressing the size of identified subsidiary 

and transaction errors. Defining k = and assuming that has

p.d.f. f^(7i^|y,h) it is easily shown that is also normally distrib­

uted with p.d.f.

fN(7rA ^ ^ ) (7)

where y = ky and h - h/k2 are the mean and precision of the normal dis­

tribution. Further, if (y,h) has a normal-gamma 2 joint density 

fjj(y|m»h)fy2(h|v,V) then the joint p.d.f. of (y,h) is also easily shown 

to be a normal-gamma 2 p.d.f. (Raiffa and Schlaifer 1961, p. 300)

fN (y|km,h)fY2(h|vk2,v) (8)

The assumptions expressed by (5) and (6) do not follow immedi­

ately from the redefinition of the population. It is true that 

^A ** h°wever> t̂ e equivalent result for the r.vs. is not
necessarily true. For both error rates and error sizes it has been 

assumed that the error uncertainty at the aggregate account level
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represents a scaling up of the corresponding experience at the trans­

action level. These are more conservative formulations than assuming 

that transaction errors may interact and reduce the intensity of the

effects on subsidiary accounts. Thus, if k =
k

it could be assumed that tt. = Y tL  .. The precision of tt. is then h/k1 > X A
or k times as high as the precision given by (7). For this alternative 

formulation the transformed normal-gamma 2 p.d.f. is no longer of the 

same normal-gamma 2 form as previously was the case in (8).

As an alternative to the above mathematical formulations for 

changing to a subsidiary account sample frame, the prior distribution 

for the size of errors in subsidiary accounts can be subjectively speci­

fied. This may be a particularly reasonable approach when the previously 

identified transaction errors have led to a comprehensive analysis of all 

the error sizes in each affected subsidiary account.

6.3 Multiple Error Consolidation

When the auditor has identified several error situations each 

with error rates and error size uncertainty, the methods used to con­

solidate this uncertainty will vary according to the specific circum­

stances. Two general approaches are possible. First it may be rea­

sonable to consolidate error rates prior to beta-normal processing. Or 

second,several beta-normal distributions or mixtures of beta-normal 

p.d.fs. may be consolidated. These two alternatives correspond to 

the error rate consolidation and error amount consolidation modules 

of figure 1.5.1.

is integer valued

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

94

6«3.1 Error Rate Consolidation

When several different error rate p.d.fs. affect the same 

accounts the auditor may wish to consolidate these error rates and only 

consider one error size p.d.f. This type of consolidation might arise 

when separate divisions generate different error rates, but there is no 

reason to expect that the corresponding error size distributions are 

significantly different. It is assumed that the number of transactions 

or subsidiary accounts for each division can be used to weight the re­

spective error rate r.vs. Thus 

n
Pc = I  wiP i Cl)i=l 1 1

where is a divisional error rate r.v. and w^ is the divisional weight.

Assuming statistical independence between the component r.vs., 

the probability moments of can be determined from the component 

moments of each p^. If a particular p^ has a beta p.d.f. its moments 

can be calculated using A2.2(l). Using these component moments, it fol­

lows from the multinomial theorem that the r ^  moment of (1) is

W  - Sr ,Y.r.la ,[»?‘E(p?»)...„^E(p^)] (2)

where a^ is an integer and the summation is over all "a" values such 
n

that I a. = r. 
k=l

Equation (2) can be expressed in a more convenient form for com­

puter evaluation through repeated application of the binomial theorem. 

Using this approach the r ^  moment of (1) is found to be
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Cw1kiE(p^1)...w^-1E(pVl) • wn :n-lE(Pn~kl“  ■”kn_1)] (3)

If the r.vs. p. for i = 1'l )•••>n are statistically dependent then

replaces the [...] term of (3). Procedures for'approximating such joint

moments are discussed in section A1.4.

Using the moments of (1) determined by (3) the Jacobi expansion 

discussed in paragraph 6.2.1 can be used to approximate the consolidated 

error rate p.d.f. as a mixture of beta p.d.f. The subsequent analysis 

then follows as if consolidation had not taken place.

6.3.2 Circumstances for Beta-
Normal Consolidation

Interest in consolidating several beta-normal distributions can 

arise in two very different ways. In the simplest case a separate beta- 

normal analysis has been performed for each dollar level stratum of an 

account or for each division of a firm processing transactions into the 

account. This process is easily envisioned for a receivables account 

where different divisions, dollar levels of activity, or customers may 

lead to different expectations.

internal control weaknesses there can be an error amount overlapping 

in particular accounts. This leads to a second need to consolidate

When a separate procedure is used to analyze each of several

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

96

several beta-normal distributions. For example, one unknown error 

amount, ej, may lead to a debit to accounts payable and a credit to 

inventory. Another error amount r.v., ezt may lead to a debit to inven­

tory and a credit to cost of goods sold. These circumstances lead to 

three error adjustment r.vs.: -ei to accounts payable balance, e2 - ei 

to inventory balance, and -e2 to the cost of goods sold balance.

The error adjustment r.vs. for summary measures such as total 

assets, net income, etc., lead to more extensive sums and differences 

of r.vs. Assume, for example, that there also was an adjustment, e3, 

to both accounts receivable and sales. The current assets error adjust­

ment r.v. would then be e2 - ei + e3, the current liabilities error 

adjustment r.v. would be -ei, and the net income error adjustment r.v. 

would be e3 + e2 .

These examples illustrate the mathematical problem to be re­

solved. How can the sum and difference of beta-normal r.vs. (or mix­

tures of beta-normal r.vs.) be consolidated into one summary p.d.f.? 

Monte Carlo simulation can, of course, be used. However, for the reason 

discussed in paragraph 4.2.3 this alternative is not particularly attrac­

tive.

In the usual auditing environment the analysis that leads up to 

the consolidation of beta-normal distributions is based upon a number 

of informed judgments and modeling assumptions. Consequently, there 

usually will be some latitude in the required precision of the summary 

r.vs. The subsequent discussion capitalizes on these circumstances and 

proposes several alternative mathematical approaches for consolidating a 

linear function of beta-normal r.vs.
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6.3.3 Calculation of Moments for 
Approximating a Sum or Dif­
ference of Beta-Normals

The problem that is now considered is to find the p.d.f. of the

r.v.

n
(4)

where the p.d.f. of e^ is either a beta-normal or a mixture of beta- 

normal p.d.fs. and w^ = ±1. Three alternative procedures are discussed 

in the next paragraph for approximating the p.d.f. of (4). The first 

two of these, a Jacobi polynomial orthogonal expansion and an extended 

beta distribution, are based upon probability moments. Consequently, 

procedures for determining the moments of (4) are first discussed. Then 

in the next paragraph, the approximation methods are examined.

the Jacobi expansion approach. This can be accomplished using equation 

(3) with pc and now representing ê , and As was indicated, statis­

tical dependence can be considered when using (3). The individual noncen­

tral moments of each e^ can be found using A4.2(6). If e^ is a mixture of 

beta-normal distributions 6.2(3) must be used in conjunction with A4.2(6).
When n, the number of error p.d.fs. to be consolidated, is large 

it may be more efficient to find higher order moments using the linear 

operator cumulant property (see for example, Frazer 1958, p. Ill, or 

Johnson and Kotz 1969, pp. 20-21) namely that

The noncentral moments of ê , must be computed in order to use

( 5 )
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In using this procedure the cumulants <(e^) are calculated from 

the moments. Then after cumulant summation, either the central or non­

central moments are calculated according to whether an extended beta 

distribution or a Jacobi expansion approximation is being used. The 

appropriate formulas for converting between cumulants and moments are 

given by Kendall and Stuart (1958, pp. 68-71).

In order to use (5) when w^ = -1 the preliminary calculation of 

the beta-normal noncentral moments must be modified slightly. It is 

easily seen that the effect of a change of variable = -tt̂  to the 

beta-normal p.d.f. A4.1(l) is to replace the constant a = X® by a = -Xm 

in A4.1(2). With this slight modification to A4.2(6) for w^ = -1, e^ 

can be expressed as a strictly positive sum of r.vs. with known moments. 

Equation (5) can then be used.

If n is large and many higher order moments are required it would 

be convenient to calculate initially the component cumulants K(e^), 

rather than just finding the noncentral moments and converting them to 

cumulants. Unfortunately, the cumulant generating function for the 

beta-normal distribution is not tractable. It is, however, possible 

to approximate the beta-normal distribution by an extended beta distri­

bution as discussed in section A4.3 and then find the cumulants of the 

approximating distribution. Section A2.4 derives a recursive relation­

ship for the cumulants of the extended beta distribution that is very 

easy to use. ^

When w * -1 a change of variable can be applied to the approxi­

mating extended beta distribution so that (5) can be used. Paragraph 

A2.5.6 shows that if the r.v. e^ has an extended beta distribution then 

the transformed variable -e^ also has an extended beta distribution.
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As discussed in paragraph A4.3.2 the extended beta approximation 

to the beta-normal may be very accurate. Thus, if the cumulants of the 

extended beta distribution are used in place of beta-normal cumulants in

(5), the summary cumulants also should be very accurate. A result due 

to Hartley (1948), can be used to determine the maximum error caused by 

this procedure. Let Ê, be the cumulative density function error due to 

the i ^  beta normal approximation. Letting maxCe^) be the maximum total 

error, it follows that 

n
max(eT) < £ max|E.|

i=l 1

If the p.d.f. of e. is a mixture of beta-normal distributions itl
is not clear how appropriate a cumulant approximation based upon a single 

extended beta distribution is. It might be thought that it would be use­

ful to approximate each component of the mixture by an extended beta dis­

tribution. However, this approach does not lead to a direct calculation 

of the cumulants, since in general the cumulants of a mixture of p.d.fs. 

is not a mixture of the cumulants. For such mixtures of beta-normal 

p.d.fs. a component by component extended beta approximation can be used 

in conjunction with a moment recursive calculation. Paragraph A2.4.3 

gives the appropriate relationships. Several other recursive relation­

ships that may be useful in this work are also given in the same appendix.

6.3.4 Approximating Procedures for
Beta Normal Consolidation

As discussed in paragraph A4.3.1 for the typically large values of 

X that are encountered in auditing statistical applications the skewness and
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kurtosis of the beta-normal p.d.f. corresponds to the corresponding 

values of the component beta distribution. Consequently, the p.d.f. of 

a sum of beta-normal r.vs. takes on the general shape of a sum of beta 

r.vs. Since in the usual auditing environment these distributions are 

very skewed and leptokurtic, one expects for at least n £  15 that the 

summary distribution will also be moderately skewed and leptokurtic.*

In accordance with the discussion of paragraph A3.2.2 these con­

siderations suggest that a Jacobi orthogonal expansion may be an appro­

priate means of approximating a sum of beta-normal p.d.fs. Further, 

for any truncated version of the unknown summary p.d.f. defined over 

(““»")» the results discussed in paragraph A3.4.2 imply that the Jacobi 

orthogonal expansion will be uniformly convergent. This property makes 

the Jacobi orthogonal expansion a particularly appealing choice in the 

more general case of both sums and differences of beta-normal p.d.fs.

(or mixtures of beta-normals). In this case, the general form of the 

unknown p.d.f. is not as predictable.

Sections A3.3 through A3.5 discuss the theory and use of the Jacobi 

orthogonal expansion for approximating a p.d.f. defined over a finite inter­

val. This interval can be determined by truncating the insignificant tails 

of each beta-normal r.v. of (4) and determining the corresponding interval 

of probability mass for the total error r.v., e^. While the required trun­

cation may seem arbitrary, as a practical matter it must be dealt with in 

all numerical work with improper integrals. The number of probability

*The convergence to normality of the sample mean (and hence for 
sums of identical distributed r.vs.) has been extensively investigated 
using modern simulation technology by Bradley (1973). He concluded that 
the rapidity of the central limit effect has been greatly exaggerated.
For skewed populations he found the central limit effect to be very 
sluggish, especially over the tail areas.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

101

moments required to fit "adequately" the unknown p.d.f. over the defined 

Interval is difficult to predict. When higher moments are required the 

previously discussed cumulant and recursive procedures are particularly 

appropriate.

As an alternative to approximating eT with a Jacobi expansion, 

the first four moments can be used to fit an approximating distribution. 

The well known systems by Johnson or by Pearson might be used (see 

Johnson and Kotz 1970a, pp. 9-33; Hahn and Shapiro 1967, pp. 198-224; 

Craig 1936; and Elderton and Johnson 1969). A particularly appealing 

alternative to these moment approaches or a Jacobi expansion is to fit 

an extended beta distribution to the unknown p.d.f.

The main advantage of this expediency is the ease with which the 

approximating distribution can be determined and utilized (see A2.3(4)). 

However, with a difference of r.vs. there is less reason to expect a 

robust approximation. It is known (Von Mises 1964, pp. 384-386) that the 

cumulative density function of the unknown and approximated distributions 

will have at least as many points of intersection as moments are used in 

the approximation. Thus, with an extended beta approximation there are 

at least four points of intersection.

6.4 Concluding Remarks

This chapter has shown how a transition can be formed from inter­

nal control error rate evidence to financial statement error adjustments. 

As discussed in section 1.3, this is as far as the theoretical analysis 

of this dissertation will proceed. This methodology for developing 

p.d.fs. for the total error amount in account balances opens up the 

possibility of a subsequent decision theoretic analysis with sample size
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and action space considerations. Another interesting question is how 

a fixed sample budget should be allocated over various compliance and 

account balance testing procedures. Since the logic developed in this 

dissertation brings together all these sources of evidence an optimal 

allocation scheme is in theory obtainable.
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CHAPTER 7

IMPLEMENTATION CONSIDERATIONS AND A CASE STUDY

7.1 Preface

While the procedures developed in chapters 4 and 5 could be used 

by an auditor to comprehensively specify his error rate uncertainty for 

each processing step of an i.e.s., this is not envisioned as a typical 

application. Rather, it is envisioned that the auditing functions and 

integration techniques of chapters 4, 5 and 6 can be combined with ex­

isting auditing practices. They then can be used to study isolated weak­

nesses of i.c.ss. and to appraise their effects on account balances. A 

case study is developed in this chapter to illustrate this process.

The appropriate conditions for such applications can arise after 

an auditor's review of internal controls and his initial tests of compli­

ance with the prescribed procedures. Through this review and testing 

process the auditor begins to form or update his judgment as to where the 

strengths and weaknesses of the system are. If the control procedures 

for a material processing step are completely lacking or highly unreli­

able the auditor may decide to not rely on internal control evidence.

Or, with highly reliable controls no further analysis may be necessary.

It is the middle ground between no controls and very reliable controls 

that seems best suited for an evidential integration analysis. These 

are the conditions under which the auditor may wish to explore in depth 

the implications of his uncertainty.
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This emphasis on examining the implications of uncertainty is 

largely overlooked in auditing texts. Rather, it is implied that 

the auditor will either eliminate his adverse uncertainty through ad­

ditional testing or will not rely upon evidence derived from his study of 

i.c.ss. There appears to be a need for procedures acceptable to 

auditors which explore the implications on account balances of this 

uncertainty. Consequently, the auditor would not be immediately forced 

to initiate testing procedures to resolve this uncertainty.

The outcome of even exhaustive testing may not lead to a clear 

choice between high assurance and abandonment of i.e.s. related evidence. 

For instance, a very tight posterior distribution on a slight to mod­

erate error rate is a source of evidence. However, with the current 

technology the auditor cannot document the implication pertaining to 

account balances that he draws from this evidence.

These issues have not been satisfactorily resolved by the de­

cision theoretic emphasis of the theoretical auditing literature. 

Typically a two state material error model is developed with the corres­

ponding opportunity losses for each i.e.s. state. However, losses 

arise out of misstated financial statements, not directly out of weak 

i.c.ss. The theoretical approach assumes that the auditor can intui­

tively make this transition from actual accounting events to i.e.s. 

loss states. While the auditor may be able to make this transition, he 

is currently not able to document the basis of his action.

The implications of a weak internal control are particularly im­

portant when it is but one of several isolated areas of weakness. The 

aggregate effect of all these problem areas on account balances must be
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examined jointly. Some of the effects may be resolved through a compre­

hensive account analysis. Where transaction volumes prohibit this 

census approach, the techniques of chapters 4, 5 and 6 can be used.

In using the auditing functions to develop such an evidential 

integration model a clear distinction must be made between the management 

objectives of internal auditors and the financial position objectives of 

external auditors. For instance, an external auditor may determine that 

the controls over invoice pricing is at times very weak, but that these 

errors are nonrecoverable. Consequently the stated sales revenue would 

not be materially affected by knowledge of the losses. Thus the external 

auditor's concern hinges on the materiality of other accounting effects 

of the error.

While the external auditor may not be interested in investigating 

these losses (see for example, Arens and Loebbecke 1976, pp. 157-160), an 

internal auditor or management consultant might be able to use the tech­

niques illustrated in this chapter to evaluate some of the potential 

benefits from implementing costly controls. When an external auditor 

does investigate these losses, he will not wish to integrate the analysis 

with other inquiries that may lead to adjustments to financial statements.

The case study presented in this chapter illustrates this dis­

tinction between integrative and nonintegrative errors. Six areas of 

i.e.s. weakness are analyzed using the techniques of chapters 4 and 5. 

Four of these weaknesses are summarized into an evidential integration 

model. The remaining two are individually analyzed.
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7.2 The Electroplum Case:
The Problem

In the remainder of this chapter some of the techniques developed 

in chapters 4, 5 and 6 are illustrated in a fictitious case study. In a 

specific auditing engagement it is to be expected that only a small sub­

set of the methods developed in these chapters will be needed. The full 

set of techniques are, of course, necessary in order to accommodate a 

variety of circumstances. The following case study conforms to this 

general pattern.

7.2.1 The Electroplum Scenario

Electroplum, an electrical and plumbing building materials sup­

plier in a large metropolitan area, had always been a very routine audit 

assignment. However, about three years ago, with the passing away of the 

founder of the firm, a major block of stock changed hands. This led to 

new leadership and a broadening of both the debt and equity bases of the 

firm to support expansion. A line of heating supplies had been added, 

and then one-and-one-half years ago Electroplum opened a large wholesale 

outlet in a distant location experiencing rapid economic growth. With 

an unanticipated escalation in the interest rate the building boom had 

collapsed early in the fiscal year, leaving Electroplum seriously over­

extended and not financially strong.

Management had reacted by cutting way back on personnel and re­

laxing credit policies to promote sales. As a result of the general 

confusion in adapting to the new mode of operation and the shortage of 

staff personnel, a number of internal control problems had developed 

over the last year. At the auditor's year-end review, six weeks after
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closing, the following six unresolved areas of weakness had been observed. 

These problems had been mainly identified during the interim review of 

internal controls and tests of these controls for compliance with the 

prescribed procedures.

7.2.2 The Sales and Collection 
Internal Control System

7.2.2.1 Credit Policy

Early in the fiscal year the credit policy had been changed to
:p

allow a $2,500 initial credit limit for each new customer. This credit 

restriction was then removed or raised when a satisfactory credit check 

was received. During the interim review, two months before closing, a 

sample of 50 credit applications for the metropolitan area had been com­

pared with the accounts receivable records for these new customers. Only 

three compliance errors had been found where the credit policy had been 

ignored.

At the branch a similar sample had found 28 cases where unlimited 

credit was being extended without proper justification. From the audit 

reports on file the auditor had estimated that about 40% of these compli­

ance errors could lead eventually to credit losses. At the time of the 

interim review these results were reported to management. Currently the 

percentage of unpaid balances 60 days or over for the metropolitan area 

was up by 20%. At the branch the 60 day and over percentage was three 

times as high as in the metropolitan area.

Management was aware of the deterioration in the accounts re­

ceivable position, but considered it a temporary result of the economic 

downturn that would clear up without serious losses. This attitude, 

plus management's extreme sensitivity to profit reducing adjustments
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placed the auditor in a very difficult situation. Rather than risk 

losing or antagonizing the client with arbitrary proposals, the auditor 

felt it would be best to investigate further before taking any action.

It was relatively easy to isolate high risk accounts, but esti­

mating the size of the potential losses was much more difficult. The 

auditor was considering a further sample from all new accounts at the 

metropolitan areas, and all accounts at the branch. This could be used 

to construct an estimated lack of compliance and default rates for each 

of the two populations. A subsample of these high risk accounts could 

then be examined in detail to estimate the size of the anticipated losses 

in each population. The auditor felt that the current allowance for un­

collectibles was adequate to cover the lower risk accounts with satisfac­

tory credit reports. Consequently, the statistical analysis would only 

focus on the lack of compliance accounts.

7.2.2.2 Unrecorded Sales

During the interim review the auditor had uncovered a difficulty 

in the internal controls for sales and collection at the branch. This 

had developed out of a new marketing strategy introduced with the opening 

of the branch.

In order to develop this new marketing area the firm had hired 

four field salesmen known to many local contractors. A standard sales 

lead was to call up contractors after work and ask them if there was any­

thing they desperately needed that the salesman could pick up at the 

branch and bring out to the job site the next day. Consequently, the 

field salesmen were often in the warehouse filling small orders to take 

with them.
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Rather than taking the time to fill out a shipping order, the 

salesmen were allowed to drop their order forms in the in-basket used for 

mailed and phoned in customer orders. When the order clerks came across 

these orders they were to fill out a shipping document, enter the shipping 

document number on the salesman's order form and pass it on to another 

basket for eventual filing in the customer file. An identical procedure 

was used for regular customer orders.

In reviewing the customer order file, the auditor had found that 

only about 80% of the orders had a recorded shipping document number. In 

a sample of 30 customer orders without shipping numbers it was possible 

in each case to identify a valid shipping document. For an equivalent 

sample of salesmen orders, no record of a shipping document was found in 

18 cases. Later, after management had investigated the matter, the 

auditor was quietly told that management had concluded that an informal 

system of "free gifts" had developed to encourage sales. The practice 

had been quietly stopped at year end with tighter controls, but it had 

been decided not to conduct a detailed appraisal of these unrecoverable 

losses.

The auditor's review of the new internal controls, six weeks after 

year end, indeed verified management's assertion that the practice had 

been stopped. However, the auditor was still concerned about the unknown 

scope of the practice. It might be possible that the branch sales were 

materially inflated by attracting customers through an unreported give­

away policy.
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7.2.3 The Inventory and Warehousing 
Internal Control System

7.2.3.1 Obsolete Inventory

During the last audit a number of obsolete electrical items no 

longer meeting the local building code in the metropolitan area had been 

observed in the main warehouse inventory. Management had stated at that 

time that these items were still up to code in a number of locations 

being considered for a second branch. While writedowns for a metropol­

itan area firm might be in order, this was not representative of the 

firm's future business area to which the items would be transferred.

With the deterioration of the firm's position such an expansion 

step seemed rather remote. Not being familiar with the details of the 

product line, during the interim review the auditor had taken a sample of 

100 electrical stock numbers with cost values between $10 and $25 per 

standard manufacturing purchase unit. The calculated sales for these 

items indicated that 18% of them were stale items. The average recorded 

dollar value for each stock number was $428.

Assuming these figures were representative of the total electri­

cal inventory, the auditor calculated that 16% of the electrical inven­

tory’s dollar value was represented by stale items. This amounted to 9% 

of the total inventory value, from which-it was projected that a 5% to 

6% writedown of the total inventory was in order.

The interim letter to management had suggested that writedowns 

seemed to be called for. However, management had reiterated its original 

position. While a 5% to 6% writedown was not material enough to make a 

strong issue of this point, the auditor was not very confident in his 

very tentative calculations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Ill

7.2.3.2 Fabrication of the Inventory Count

According to the branch warehouse manager, the metropolitan ware­

house's relaxed policy toward employee pilferage had proved to be un­

realistic at the new branch. While no reliable evidence of pilferage had 

been established, the branch manager had recently implemented strict 

controls. This had led to some employee friction and suggested to the 

auditor that there could be some fabrication of the end-of-period inven­

tory to cover up for shrinkages.

A new inventory would be very difficult to take at this late date, 

but the auditor could use an EDP audit program in conjunction with the 

firm's automated inventory records to generate a dollar unit sample of 

the branch's end-of-period inventory. Management had reluctantly agreed 

to assign an experienced employee to investigate and document for the 

auditor's review a sample of 100 stock numbers. From this information 

the auditor could determine the error amount per stock number dollar for

each of the stock numbers in the sample. He could then construct sample

error rates and error sizes for each of the sampled dollars.

7.2.4 The Acquisition and Payment Internal
Control System Shipping Charges

Verifying the freight charges on shipments from manufacturers 

had always been a troublesome weakness iii the payment i.e.s. A manage­

ment study three years previous had concluded that about 16% of the rail 

and trucking bills and about 6% of the remaining bills contained over­

charges. Either the quoted shipping weights were in error or the appro­

priate tariffs were not applied. The accounting department only reviewed 

the rail and trucking bills, since the dollar error amounts of the re­

maining bills were usually minor, and often not recoverable.
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The Interstate Commerce Commission regulations pertaining to the 

rail and trucking rates were difficult to follow, and it was not always 

possible to verify the quoted shipping weights. Recognizing that exhaus­

tive error checking was not feasible the following review procedure had 

been devised. The rail and trucking bills first were collected together. 

Then all the rail and trucking bills over a specific dollar amount were 

culled out for review. This led to a "census" stratum. An experienced

accounts payable clerk then picked out of the remaining rail and trucking
*

bills those that in his judgment should be investigated.

At the time of the management study three years previous, it had 

been estimated that about 3% of the rail and trucking bills were over­

looked and not included in the error review procedure. Of the rail and 

trucking bills with overcharges, it was estimated that 25% would not be 

examined, 55% would be picked out by the judgmental process and 20% would 

have large dollar amounts and be automatically reviewed. It was also 

concluded that the error analysis of the 55% group would only pick up 

about 90% of the errors in this group. The large dollar amount census 

stratum was carefully examined and rarely, if ever, led to an oversight. 

Subsequent experience with the system had shown that 10% of all the bills 

fell into the census stratum, 20% were optionally examined and the re­

maining 70% were not looked at.

Up until the opening of the branch the system had apparently 

worked satisfactorily. Since then, the stocking of the new branch had 

led to a lot of unfamiliar types of shipments. Further, the experienced 

payables clerk who did the sorting had been promoted to another position 

at the branch. In the auditor’s judgment, there was reason to believe
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that the residual rail and truck overcharge rate was significantly higher 

than 5.21% [.03(16%) + .97(16%)(.25 + .55 x .10)].

7.2.5 The Payroll Internal Control
System Overtime Payments

In order to promote sales at the new branch Electroplum extended 

the normal wholesale business hours to 7 p.m. Staggered shifts and a 10 

hour, 4 day workweek were selectively introduced on an experimental 

basis. According to the agreement worked out with the union, no employee 

could be forced to accept a 4 day workweek and Electroplum reserved the 

right to switch 4 day employees back to a 5 day schedule. There had been 

as a result of these provisions considerable switching back and forth.

These complications, plus the extensive reduction in employment, 

had led to considerable overtime for the remaining warehouse personnel. 

Five day a week employees sometimes worked 10 hours. Four day a week 

employees sometimes worked part of an extra day of overtime or on regular 

time to make up for leaving early (another union provision). Because of 

the high fringe benefit costs for each additional employee and the gen­

eral economic uncertainty, branch managers judged that the current system 

with overtime and flexibility was more advisable than increasing the 

staff.

There was one administrative problem which the auditor had de­

tected during the interim review. As required by the union contract, 

when overtime was utilized, the employee had to be paid for at least 2 

hours of overtime. Thus, many 10 hour days were clocked in and it was 

not clear from the time card hours themselves how much, if any, overtime 

hours were represented by a given Thursday to Wednesday pattern of hours.
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Each supervisor was supposed to review all the time cards for 

his employees and indicate on the card the regular and overtime hour 

breakdown. The overtime hours were then approved by the foreman and 

sent to the payroll clerk. While strong controls were not built into 

the system, the auditor had concluded at the interim review that the 

system was working fairly well in the electrical department.

In the plumbing and heating department, the auditor was uncer­

tain as to the extent of the controls. Rather than verify the overtime 

hours using employee records, the manager of this department had just 

glanced over the cards. Apparently very few errors had been detected 

and without this feedback the supervisors had grown accustomed to 

relying on the overtime hour breakdown that the employees often entered 

on the card.

The auditor had pointed out this weakness to central management 

at the time of the interim review. Statistical testing had not been 

proposed since the possible overpayments were not recoverable, and this 

was more a matter of administrative control than financial statement 

integrity. Corporate management had stated at the time that they would 

handle the matter internally.

In later discussions the branch manager had convinced corporate 

management that the personnel situation with the plumbing and heating 

foreman was very delicate. Management had decided to hold off until after 

the autumn heating business, and then let the auditor look into the 

matter. Rather than just looking at the plumbing and heating department 

it was suggested that all overtime processing procedures at the branch 

be examined.
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7.2.6 The Auditor’s Problem

It should be emphasized that the six internal control weaknesses 

postulated for Electroplum represent only those areas for which it is not 

feasible to conduct an exhaustive census. From the statistics available 

to the auditor, it appears that none of the problems are extremely crit­

ical. However, there are two further issues to be considered. What is 

the joint effect, and how is this effect influenced by the uncertainty 

of the auditor toward the stated statistics? *

The auditor is, of course, subject to both economic and time pres­

sures to complete the audit. In order to justify more complete testing it 

may be useful to explore first with analytical techniques the implications 

of his prior judgment. This can be accomplished by using the auditing 

functions and related techniques to develop an auditing model based upon 

prior p.d.fs. If after this analysis it is decided to conduct additional 

tests it is imperative that the significance of the results be fully in­

vestigated. After prior to posterior analyses the auditing model again 

can be used to explore the implications of this new set of data.

As will be seen, only a few of the techniques developed in chap­

ters 4, 5 and 6 are used in this example. However, as previously stated, 

since the requirements of each audit are usually different, the flexi­

bility of a full set of techniques is necessary.

7.3 The Electroplum Case;
The Analysis

In this section the Electroplum scenario is interpreted in terms 

of the statistical techniques developed in the previous chapters. The 

implications of the six unresolved problems are summarized, and then it
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Is explained how these techniques can be used to develop a model of the 

auditor's total error uncertainty. In order to facilitate easy reference 

to the complementary material of section 7.2, the paragraph numbers of 

this section have been aligned with those of section 7.2.

7.3.1 Error Implications

The first step in the development of the Electroplum model is to

summarize the types of accounting adjustments that might arise from the

weaknesses. Table 7.3.1 presents these results. As discussed in paragraph

7.2.2.2, it has been assumed that the unrecorded sales are uncollectible,

but are still of interest to the auditor. At management's request the

excessive overtime payments will also be investigated. Each of the error

amounts (designated by e ) is an uncertain amount or r.v. The resultingxy
adjustments to the income statement and balance sheet accounts are pre­

sented in table 7.3.2. This analysis indicates the two analytical tasks

yet to be performed. Each r.v., e , must be specified and the p.d.f. ofxy
functions of these r.vs. must be determined.

The following analysis for each i.e.s. weakness can be based 

upon either a noninformative prior judgment or a more specific informed 

judgment arising in part from the statistics reported in section 7.2.

In the latter case, the techniques to be discussed can be used prior to 

additional sampling to explore the implications of the prior judgment 

and potential sample evidence.
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Table 7.3.1

Adjustment Transactions for the Error Analysis

I. The Sales and Collections ICS >

A. Credit Policy DR Bad Debt Expense 
CR Allowances for 

Uncollectibles

ecp
ecp

B. Unrecorded Sales e (No Recoverable Adjustment)US

II. The Inventory and Warehousing ICS

A. Obsolete Inventory DR Inventory Writedown 
Expense 

CR Inventory eoi
eoi

B. Fabrication of Count DR Inventory Loss 
CR Inventory efc

efc

III. The Acquisition and Payment ICS

A. Shipping Charges DR Accounts Payable 
CR Inventory

esc esc

IV. The Payroll ICS

A. Overtime Payments eop Recoverable Adjustment)
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Table 7.3.2 

Financial Statement Error Adjustments

I. Income Statement
Sales
Less Cost of Goods Sold 

Inventory Loss 
Inventory Writedown 
Bad Debt Expense 
Administrative Expense 

Net Income

:fc'oi
"cp

" efc " eoi ” ecp

II. Balance Sheet

Assets

Cash
Accounts Receivable (Net of Allowance) 
Inventory

Total Current Assets

Fixed Assets

Total Assets

Liabilities and Owners Equity

Accounts Payable 
Long-Term Debt

Equity
Beginning Retained Earnings 
Net Income

Total Liabilities and Owners Equity

• • • •

ecp
esc ” efc " eoi

esc ~ efc - eoi ~ ecp

- e  - e, - e . - e  sc fc ox cp

- esc

“ efc ~ eoi ~ ecp

~ esc ~ efc eoi ecp
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7.3.2 Sales and Collection Error 
Analysis

7.3.2.1 Credit Policy

The credit policy error rate analysis is an application of the 

compliance error discussion of section 4.3 and in particular 4.3(1). 

However, it is not necessary in this analysis to make a distinction be­

tween the in error (D ) and not in error (D ) initial error states ase ne
discussed in section 4.3. Consequently, the corresponding conditional

*

probability notation of that section is not used. Further, since the 

presence of a favorable credit report was noted to provide positive 

evidence of compliance to policy no distinction must be made between 

assertive compliance and actual compliance as represented by equation 

4.3(2). Also, since the auditor is confident that the current allowance 

for bad debts is adequate to handle defaults resulting from customers with 

acceptable credit reports, it is assumed that P(e |c ) = 0 in 4.3(1). 

Consequently for each location

p(Ecp) = P(E|~C)P(~C) (1)

Thus, the analysis of the credit policy only considers lack of 

compliance "errors" (or defaults). Since there is no reason to expect 

that the dollar sizes of errors will differ between the two locations, 

error rate consolidation is used as discussed in paragraph 6.3.1. The 

firmwide error rate for credit policy default errors is
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where the component probabilities for the metropolitan and branch loca­

tions are given by (1) and w^ + Wg = 1 are population percentages easily 

developed from the sample populations defined in paragraph 7.2.2.1.

For each location a prior to posterior beta p.d.f. analysis based 

upon the current sample data can be used to develop a p.d.f. for the lack 

of compliance. The probability of an error given a lack of compliance, 

P(Ej ~C), is not easily specified. From a sample of these compliance 

errors, the auditor must exercise his judgment and predict for each 

sample if less than full payment is to be expected. This ex ante predic­

tive analysis is briefly discussed in paragraph 6.2.1. These predictive 

observations can then be used in a prior to posterior beta p.d.f. anal­

ysis for P(E|~C).

Assuming that a common p.d.f. for P(E|~C) is used for both loca­

tions, it follows from (1) and (2) that

The procedure discussed in paragraph 6.3.1 can now be used to find the

noncentral moments of P(ECp). The moments for the component beta p.d.fs.

are given by A2.2(l). The moments of P(E ) are then used to develop acp
mixture of beta p.d.fs. as discussed in paragraph 6.2.1.

For those compliance errors, which are predicted to lead to a 

default, a further prediction of the size of the default can be used in 

a normal-gamma 2 prior-to-posterior analysis. The beta-normal analysis 

of paragraph 6.2.1 and in particular equation 6.2(2) is then used to de­

termine the p.d.f. of ecp, the predicted total error (default) amount.
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7.3.2.2 Unrecorded Sales

A p.d.f. for the total amount of unrecorded sales can be devel­

oped using a beta-normal analysis, without any of the complications that 

arose in analyzing the credit policy. A sample population of salesmen 

orders within the customer order file can be defined and sampled. An 

attempt can then be made to trace each sampled item to a valid shipping 

order. The amount of the "giveaway" in the sampled error documents is 

then determined. After prior to posterior updating of the beta and

normal -gamma 2 p.d.fs., a beta-normal p.d.f. for the total error amount, e ,US
can be determined. The currently available statistics discussed in para­

graph 7.2.2.2 can, of course, be used in this analysis with or without 

subsequent samples.

7.3.3 Inventory and Warehousing Analysis

7.3.3.1 Obsolete Inventory

A stratified beta-normal analysis can be developed using the 

original unit cost of the inventory items. For each stratum a beta- 

normal p.d.f. can be determined using procedures similar to those used 

for the unrecorded sales, as discussed in paragraph 7.3.2.2. The p.d.f. 

of the obsolete inventory adjustment error, eQ;., is then a weighted sum

of the beta-normal p.d.fs. for each stratum. One of the beta-normal con­

solidation procedures discussed in section 7.3 can be used to approximate

the p.d.f. of e ^.oi

7.3.3.2 Fabrication of the Inventory Count

The details of the proposed dollar unit sample are discussed in

paragraph 7.2.3.2. The indicated procedures lead to an error rate of
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sampled dollars and a prorated error size for the in error dollars.

After prior to posterior updating a beta-normal distribution on the total

Error control processing function (g) of table 5.2.1 can be used 

to study the freight overcharges. Figure 7.3.1 gives a numerical version 

of (g) constructed from the statistics given in paragraph 7.2.4.* It is 

assumed initially that all error probabilities are known quantities 

rather than r.vs.

Figure 7.3.1. Accounting Function (g) for Shipping Charges.

The effect of a deterioration in the performance of the error 

analysis sorting and processing can be studied by replacing .03, .10,

.25, .55 and .20 by the r.vs. q7, qi,, q2, p2 and p2 = 1 - q2 - p2»

This is the notation used for function (g) in table 5.2.1. The remaining 

values are either not relevant or not expected to have been affected by 

the new types of shipping. They are assumed to be known fixed values.

*The probability value .786 = [,70-.16(.25)]/.84. Similar logic 
is used to calculate .133 and .081.

number of fabricated inventory dollars, e^, can be determined.

7.3.4 Acquisition and Payment Analysis 
Shipping Charges

No Error Normal Error
Analvsis (70%) Analysis (20%)

Normal Error 
Analvsis (20%)

Special Error 
Analvsis 10%
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Given a prior beta p.d.f. for each of the r.vs., formula 

(g) of table 5.3.1 can be used to determine the moments of the 

output error rate r.v. Q . The p.d.f. of q7 can be easily specified
£i

through sampling, however, the p.d.f. of the remaining r.vs. are diffi­

cult to determine. Consequently, an ex ante to sampling analysis can be 

very useful in determining the implications of the auditor1s professional 

judgment about these error rates.

Formula (g) of table 5.3.1 can be simplified using table 5.3.2. 

From (g) of table 5.2.1 it is easily seen that q3 = q5 = 0. According to

table 5.3.2(g), this implies that the indices j, k and i are fixed at

j = k = 0 and i = n. Applying these simplifications to equation (g) of 

table 5.3.1 with Q = .16 and q6 = 1 yields

e(q“> = c.i6)n i i f <-i)B<;)<n“V:*) ECq̂ qr̂ qSq?) <*>E A=0 m=0 r=0 X, m r

Using table 5.3.2 and the related discussion of paragraph 5.3 the 

moments of (4) are easily determined when the r.vs. are statistically in­

dependent. The moments of the component beta p.d.fs. qre given by A2.2(l). 

Considerations of correlation between these component distributions can 

be accommodated using the procedures of section A1.4.

Given the moments of (4) the unknown p.d.f. can be approximated as 

a mixture of beta p.d.fs. as discussed in paragraph 6.2.1. Thus, in 

order to determine a beta-normal p.d.f. for the shipping charge r.v. it 

is only necessary to specify a normal-gamma 2 distributions for the re­

coverable freight adjustments. Assuming that the past adjustments are 

representative of the possible adjustments, this data can be used to de­

velop the required distribution. However, care must be taken to exclude 

the adjustments of the large dollar amount "census" stratum in this
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determination. Finally, since some of the adjustments have already been 

achieved, the financial statement error adjustment r.v., e , is givenSC
by a mixture of beta-normal r.v. minus the currently collected amount.

7.3.5 Payroll Analysis Overtime 
Payments

Using accounting functions (a) and (c) of table 5.2.1 figure

7.3.2 can be constructed for analyzing overtime payment error rates. The 

subscripts e, h and p are used to indicate the electrical, plumbing and 

the heating and payroll clerk functions. The additional letters s and f 

abbreviate the modifiers "supervisors" and "foremen."

Electrical Foreman 
(function a)

0
(P Q)ef

Plumbing and 
Heating Foreman 
(function a)

Q)

w.

(P»Q)i

hf
w.

Weighted Average Merging 
(function c)

Payroll Clerk 
(function a)

- C  °)\ n a /
>(P,Q).

Figure 7.3.2. Functions (a) and (c) for Overtime Payments.

Figure 7.3.2 indicates the flow of time cards from the depart­

mental supervisors to the foremen and then to the payroll clerk. The 

r.vs. qgJ , q ^  and q^ represent the probabilities that a foreman or 

payroll clerk will fail to correct a time card with an invalid distribu­

tion between regular and overtime hours. As the matrices indicate it is 

assumed that no new errors are introduced by the electrical foreman or
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the payroll clerk since in both of those areas personnel records are 

consulted before making any modifications to a time card. Even though 

the payroll clerk has no specific responsibility for verifying all the 

overtime hours, his familiarity with the process adds another control to 

the system. Thus q^ is not assumed to be 1.

After a preliminary review of the documented flow the auditor can 

specify p.d.fs. for each r.v. and conduct a preliminary analysis. If the 

uncertainty in any Q of figure 7.3.2, or in a beta-normal r.v. incorpor­

ating an error rate Q, is unacceptable the auditor may wish to develop 

further sample evidence. A sample of time cards from each department

can be used in a prior to posterior analysis for the r.vs. Q and Q, .es us
The identified errors then can be used as sample observations for prior 

to posterior updating of q^, q ^  and qg. Those errors that are not cor­

rected by the foreman can be used as observations for prior to posterior 

updating of q^.

Moment functions (a) and (c) of table 5.3.1 can be used to calcu­

late recursively the moments of the final error rate Q^. This iterative 

procedure is discussed in section 5.5. The remaining steps in the anal­

ysis do not introduce any new considerations. They are used to determine

a p.d.f. for e . the total overtime error amount, ot

7.3.6 Aggregate Error Amounts

The Electroplum analysis of section 7.3 has discussed how a total 

error amount p.d.f. can be determined for each of the six areas of weak­

ness identified by the auditor. The aggregate uncertainty or cumulative 

effect of these errors is also of concern to the auditor. As illustrated 

in table 7.3.2 there are aggregate effects on net income, inventory and
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total current assets. The total asset effect and the total liabilities 

and owners equity effect is in this case the same as the total current 

asset effect.

In analytical terms, aggregate p.d.fs. may be desired for

+ e . + e  , e  + e - + e .  and e + e£ + e . + e where each rc 01 cp sc fc 01 sc fc oi cp
e is a r.v. with either a beta-normal p.d.f. or a weighted sum of beta-XX
normal p.d.fs. This problem has been discussed in paragraphs 6.3.2

through 6.3.4. Several approximations to such aggregate p.d.fs. are sug-
»

gested in paragraph 6.3.4.

The particular approximation an auditor may wish to use is very 

much a function of the computing capabilities he may have available.

Once the appropriate subroutines have been developed, the auditor may 

wish to conduct initially one very accurate analysis using the Jacobi 

polynomial expansion approach. Then if an extensive sensitivity analysis 

is desired the computationally simple extended beta approximation might be 

considered.

These comments are, of course, strictly conjectures based upon 

a prior judgment of the empirical implications of the theory developed 

in this dissertation. While such empirical issues transcend the boun­

daries of the dissertation, they do emphasize the need for subsequent 

empirically oriented research.

7.4 Concluding Remarks

The Electroplum scenario and this chapter's analysis has been 

used to demonstrate how the methodology of this dissertation might even­

tually be applied to routine types of auditing problems. Besides offering
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a pedagogical exercise for better comprehending the theory of the pre­

vious three chapters, the analysis also serves to highlight some of the 

possible areas of future research.

The need for computer oriented empirical research was emphasized 

in the concluding paragraph of the last section. There are additional 

considerations of the robustness of the various probability models used 

in the analysis for capturing the auditor’s judgment and representing 

the types of dollar errors that usually occur. While some prior research 

has been done, there are numerous methodological questions associated 

with the specification of the auditor's judgment. Existing and possibly 

new methodology suggestions need to be evaluated in an auditing setting. 

The impact of education, assessment training and personality character­

istics on the performance of individuals and groups of assessors could 

be researched in greater depth.
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CHAPTER 8

CONCLUSION

As stated in chapter 1, the specific research question examined 

by this dissertation is "How can a quantified form of the auditor's 

judgment be analytically combined with additional sources of evidential 

information?" The analysis of chapters 4, 5, and 6 has shown how this 

can be accomplished.' Throughout this analysis p.d.fs. for the auditor's 

uncertainty about error rates and error amounts are combined with sample 

evidence and auxiliary a priori information.

In this analysis a method has been presented for recognizing 

both the intricate control structure of an i.e.s. and the auditor's un­

certainty about the reliability of its operation. It has then been shown 

how the intertwining effects of the reliability of several i.c.ss. can be 

combined with a direct substantive analysis of the reliability of an ac­

count balance. Finally several alternative methodologies have been pro­

posed for aggregating the error uncertainty in several accounts, each of 

which is subject to the above interplay between i.c.ss. and an account.

The special requirements of this analysis have led to several 

mathematical statistics studies presented in the appendices. The pre­

dominate role played by the beta p.d.f. has led to a survey and analysis 

of many properties of the extended beta p.d.f. A treatise on the use of 

Jacobi orthogonal polynomials in approximating a p.d.f. has provided an 

analytical basis for combining i.e.s. and account balance forms of
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uncertainty. Finally a Bayesian natural conjugate analysis for a gamma 

p.d.f. process has been developed. The significance of these mathemat­

ical aspects of the dissertation is not necessarily confined to the 

specific auditing application.

While the scope of this dissertation is fairly broad it should 

be emphasized that the analysis is subject to the usual limitations of 

models. Thus it is not clear how well the assumed p.d.f. structure can 

emulate the actual probabilistic processes and judgmental forms of un­

certainty of concern to the auditor.

If the model is considered as a potential descriptive theory of 

an auditor's implicit evidential integration process, the predictive sig­

nificance of the model might be used to evaluate the robustness of the 

analysis. Thus one criterion for evaluating the evidential integration 

model is how well it can emulate the types of conclusions implicitly 

reached by auditors. That is, are the summary judgments of the auditor 

compatible with the analytical judgments that arise from the model.

These latter judgments are of course an integration of both objective 

evidence and auditor's more detailed component judgments.

If the model can be shown to have predictive significance, it 

might be of interest to focus on costs and benefits and explore its ac­

tual utilization. In section 1.2 it has been suggested that, through an 

accompanying sensitivity analysis, the model might generate new types of 

benefits and reduce the costs of sampling. As a possible additional 

benefit, the model allows the auditor to document the process of analysis 

and narrow the scope of the subjective judgments that others observe in 

the auditor's methodology.
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It would be very difficult to divorce the evaluation of the model 

from actual auditor performance and deal with the model as a normative 

methodological theory. Thus, rather than assuming a descriptive objec­

tive of emulating actual auditing conclusions, an independent normative 

evaluating criteria could be constructed. This leads to many difficult 

questions of error amount materiality.

From such a normative perspective, the analytical conclusions of 

the model might be compared repeatedly with the actual total error amounts ' 

found in a selection of accounts. This is not only very difficult to do, 

but also very difficult to evaluate. Besides the obvious problems of 

research design, there are questions as to what type of scoring rule 

should be used for each comparison (see, for example, Winkler 1967).

Thus the p.d.f. for the total error developed by the model must be 

scored using a single number, the actual total error amount developed 

through some independent study of each account.

Such normative and descriptive evaluations of the model are intri­

cately connected with the methodology used by the auditor to quantify 

his judgmental uncertainty; Until such time as this judgmental method­

ology is independently evaluated in an auditing setting it will be very 

difficult to separate out the potential inadequacies in the model from 

those arising from the judgmental specification process. The development 

of such an auditing methodology for specifying error rate and error 

amount uncertainty is thus an important direction for future research.

Another possible avenue for future research is to investigate the 

error size normality assumption of the beta-normal analysis. However, 

given the infrequency of such errors it is very difficult to sample
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actual accounting populations for these errors. Thus it is difficult to 

form judgments about the adequacy of the normality assumption. A more 

straightforward approach of some value would be to make comparison be­

tween the beta-normal analysis and the beta-gamma model considered in 

paragraph 6.6.2. Such a simulation study could provide some insights 

as to the implications of possible deviation from normality on the pre­

dicted total error uncertainty for an account balance.

In a problem with as many facets as those that arise in the inte-
f

gration of auditing evidence, alternative analytical models are no doubt 

possible. Others with different dispositions and technical expertise 

could undoubtedly develop a completely different type of theory for the 

integration of auditing evidence. For example, the firm's business 

setting, current economic constraints and risk levels are not explicitly 

utilized in the model. Rather it is assumed that these factors enter in­

to the auditor's evaluation of his uncertainty about specific error 

rates and amounts.

Similarly there are no provisions in the model for explicitly 

utilizing the ARIMA and regression predictions that arise out of an ana­

lytical review of account balances (see Deakin and Granof 1974; Kinney 

and Bailey 1976; and Kinney 1977). Rather it is assumed that these pro­

cedures are used in part by the auditor to narrow the focus of his 

concern, and hence isolate the accounts that will be subject to an inte­

gration of evidence analysis.

The analysis developed in this dissertation concludes a theoreti­

cal phase in the author's study of the integration of auditing evidence. 

This is not to suggest that additional theoretical work may not be
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forthcoming, but rather to emphasize that the next step in this stream of 

research appears to be empirical.

A major aspect of the dissertation’s analysis has been based 

upon the use of probability moments in a Jacobi orthogonal polynomial 

series expansion for the form of unknown p.d.fs. As discussed in appen­

dix 3 this type of procedure was originally suggested by Pinney (1947) 

for a curve fitting application, and has been subsequently largely over­

looked and never adequately explored. While the mathematics of the 

procedure have been developed in more depth in this dissertation, an 

empirical evaluation of the use of the procedure in an auditing setting 

remains to be carried out. There are unanswered questions as to the 

rate of convergence of the expansion which will affect the cost effec­

tiveness of the model when used in an extensive sensitivity analysis.

Such an evaluation could build upon the case study developed in 

chapter 7. This approach would add a focus and structure to such empiri­

cal work. It would also serve a second objective of developing an empir­

ical demonstration of the use of the evidential integration model. At 

this stage in the development of the model, the author’s thinking might 

profit from the broader exposure possible with an empirical example that 

practitioners could follow.

Thus it is seen from the discussion of this concluding chapter 

that the next step in the development of the evidential integration 

model is twofold. There is a need for both empirical simulation research 

and research directed at perfecting the auditor’s judgmental specifica­

tion process. It is the author's intention to proceed immediately with 

the first research objective and work with others with a behavioral re­

search background on this latter objective.
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APPENDIX 1

NOTATION AND MISCELLANEOUS RESULTS

Al.l Preface

Section A1.2 of this appendix defines the notational conventions 

used in this dissertation. The subsequent two sections discuss some 

miscellaneous mathematical results. In section A1.3, it is shown how 

the reliability analysis of Cushing (1974) can be restated in the Yu and 

Neter (1973) format. Section A1.4 discusses some multivariate proba­

bility models that may be useful in calculating the joint moments of 

statistical dependent random variables.

A1.2 Notational Conventions

In paragraph Al.2.1 the technical abbreviations and numbering 

system used in the dissertation are defined. This is followed by a dis­

cussion in paragraph Al.2.1 of the mathematical notation used to 

specify probability density functions and probability moments.

Al.2.1 Technical Abbreviations and 
Numbering System

As is currently the custom in technical writing this dissertation

avoids using a variety of abbreviations. However, several technical

forms, that are used repeatedly, are abbreviated in order to improve the

exposition. These are:

r.v. = random variable p.d.f. = probability density
l.h.s. = left-hand side function
i . e . s. = internal control system r.h.s. *= right-hand side

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

146

Plural and possessive forms of these abbreviations parallel the usual

conventions. Thus r.vs. abbreviates "random variables" and i.e.s.'s

means "internal control system's."

This appendix illustrates the chapter (or appendix), section and

paragraph three level numbering system used in this dissertation. In

order to avoid burdening the reader with superfluous numerical details,

equations are numbered by section. Thus the equation 
1

Eg(x|psq) = xfg(x|p,q)dx (1)
o

is referred to as (1) within this section. References from outside of 

section A1.2 refer to the equation as A1.2(l).

In contrast, a reference to paragraph 1 of section A1.2 is 

always referred to as paragraph Al.2.1. If paragraph 1 was part of 

chapter 1, it would be referred to as paragraph 1.2.1. Similarly, 

table 1.2.1 is the first table of section 1.2 in chapter 1. Thus, 

equations, paragraphs, tables and figures are all numbered by section.

For equations the intrasection reference is shortened to (1).

Al.2.2 Mathematical Statistics Notation

The notation used in this dissertation is based upon the notation 

of Kendall and Stuart (1958) for probability moments and Raiffa and 

Schlaifer (1961) for p.d.fs. A composition of these two systems leads 

to the following conventions.

(i) The letter E is used to indicate the expected value oper­

ator. When it is useful to emphasize the nature of the p.d.f. and/or

the distribution's r.v. subscripted forms such as E0, E0 and E are
p px x

used. Subscripts such as 8 , Y> and N are used to indicate a<specific 

type of p.d.f.
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(ii) The symbol | is used to initiate an optional list of param­

eters in an expression for the p.d.f. of a r.v. For example fD(xlp,q)P
and Eg(x|p,q) indicate the p.d.f. and expected value of a standardized

beta distribution with parameters p and q. The forms fc(x) and E„(x)P P
are used when the nature of the parameter set is apparent from the sup­

porting text.

(iii) The symbols p^ and p' are used to indicate, respectively,

the r*"*1 central moment and the r ^  noncentral moment (about zero) of an

implicit probability distribution. When an explicit statement of the

probability distribution is useful, forms such as P^(Bjp>q) and Pr(3)

are used. In applications, where a number of different noncentral

forms of a common p.d.f. f(x) are considered the noncentral moments

are specified by expressions such as p (z~) or p (x). Thus ]s', P^(6)x D“ 3 r r r
and p (x) all indicate the ED (xr).X pX

(iv) The letters s and e are used to emphasize, respectively,

the standardized and extended forms of a probability distribution.

Thus, p'(s) and E (x ) indicate the r noncentral moment of a stand- X s
ardized probability distribution, while fe^(x), pr (e$) and Eeg(u-pi)r

tVirefer to the p.d.f. and r central moment of an extended beta distri­

bution. When this convention is used in conjunction with a specified

r.v. a form such as f 0 could be used. The extended beta p.d.f.,epx b-a
£ _(x),has been specified with a substitution defined by x = ep d—a

Al.3 A Restatement of the Cushing 
Analysis in the Yu and Meter 
Format

The purpose of this section is to illustrate how the error 

analysis model for i.e.s. document processing developed by Cushing (1974)
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can be reformulated in the notation used by Yu and Neter (1973) for 

describing a document flow. Yu and Neter presented their model using 

four possible document states. However, as they note, their procedures 

are equally applicable for other state vectors. The present discussion 

is based upon a two state model: not in error (NE) and in error (E).

Cushing analyzed a number of scenarios, the simplest of which 

is a "Single Control— Single Error." Table Al.3.1 gives the steps used 

to restate this component of the Cushing system in the Yu and Neter 

format. More elaborate components of the Cushing analysis can be re­

formulated in the Yu and Neter format using similar procedures. Thus 

rather than representing two disjoint analyses of i.c.ss., the models of 

these authors are compatible systems that emphasize different aspects 

of the same subject.

A1.4 The Calculation of Joint 
Moments for Correlated 
Random Variables

This section discusses procedures that can be used to calculate 

joint probability moments when there is statistical dependence between 

several of the component r.vs. This problem arose in sections 5.3 and 

6.3 where methods were developed for determining the moments of consoli­

dated error rate r.vs.

Al.4.1 Some Possible Approaches 
to the Analysis

It is assumed that the decision maker’s knowledge about the 

natural of the correlation between r.vs. is somewhat vague. Consequently, 

an analysis of the effect of correlation on the calculation of joint
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T a b le  A l . 3 . 1

A Restatement of the Single Control— Single Error 
Component of the Cushing System in the 

Yu and Neter Framework

The Two States: Not in Error (NE), In Error (E)

The Initial State Probabilities: Ŵ . = [l,0]

The "Processing" Transformation— Probability Matrix (P):

The Output Vector: Wq = Ŵ .P = [p,l-p]

NE E

NE P 1-P
E 0 1

Q": Error Processing Q': No Error Processing
NE E NE E

NE l-P(s) 0 NE P(s) 0
E 0 P(e) E 0 1-P(e)

The After Branching State Output Vectors:

Wo = WoQ" = d-p)P(e)] ( error processing)

W' = W Q1 = [pP(s), (1—p)(l-P(e))] (no error processing) o o

The "Error Processing" Transformation Probability Matrix (R):

NE E
NE P(d) 1-P (d)
E P(c) l-P(c)

The Rejoined Vector:
/P(d) l-P(d)

W* + W"R = [PP(s) , (1-p) (l-P(e))] + [p(l-P(s)) ,(l-p) (P(e)][
° 0 \P(c) l-P(c)

= [pP(s) + p(l-P(s))P(d) + (l-p)P(e)P(c),

(l-p)(l-P(e)) + p(l-P(s))(l-P(d)) + (l-p)P(e)(l-P(c))]

(The Cushing Result)
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moments should be adequately represented by an appropriately constructed 

multivariate probability model. The following two requirements for such 

a model would seem to be necessary. The marginal distribution for each 

variable of the multivariate model should match the known p.d.f. (or 

moments) of each component r.v. within the joint moments. And second, 

sufficient parameters should be available in the model for specifying 

an independent estimate of the usual correlation between each pair of 

r.vs.

If the known marginal distributions were normally distributed, 

a multivariate normal distribution would satisfy these requirements. 

However, the marginal distributions of interest in the current cirucm- 

stances tend to be right skewed and highly leptokurtic with the general 

shape of beta distributions. For these distributions a multivariate 

normal model offers only a very crude approximation.

As an alternative, multivariate beta distributions might be 

considered. These distributions are surveyed by Johnson and Kotz (1972, 

pp. 186, 231-238) and by Press (1972, pp. 133-138). Also of interest 

is the analysis of Tan (1969). Unfortunately the multivariate beta 

distributions that have been developed lack the parametric richness of 

the multivariate normal distribution. While each marginal distribution 

may be a beta distribution, only one independent parameter can be used 

to specify its general form. Further, the correlation between r.vs. can 

not be freely specified as with a multivariate normal distribution.

Similar difficulties arise if one attempts to approximate each 

marginal distribution with a gamma p.d.f. The Wishart distribution and 

several other multivariate distributions with marginal gamma p.d.fs.
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are reviewed by Johnson and Kotz (1972, pp. 158-169, 216-230). In all 

cases these multivariate distributions lack sufficient parameterization 

for the present purposes. The Wishart distributions present additional 

difficulties since only the "diagonal" marginal distributions are gamma 

distributed (Press 1972, pp. 100-105).

These difficulties motivate the transformation approaches de­

veloped in this section. It is assumed that a transformation of each 

known marginal distribution is normally distributed. A multivariate 

normal distribution is then constructed from these transformed r.vs.

The moments and correlations of the original r.vs. are used to deter­

mine the multivarite parameters. Now if a unique inverse to each trans­

formation exists, it is possible to express the desired joint moments 

in terms of multivariate normal expected values (Jones and Miller 1966). 

These multiple integrals can in theory be used to calculate the approxi­

mation to the desired joint moments.

In practice these steps can lead to analytical problems. There 

are, however, several special features of the logarithmic transformation 

(Z = log X) that can be used to develop a simple solution. In the sub­

sequent paragraphs this transformation and a semitractable power trans­

formation (Z = X1^)  are examined in detail.

The logarithmic transformation gives exact results when the 

original untransformed marginal distributions are lognormal distributed. 

For other types of marginal distributions, the nature of the lognormal 

approximation can be seen from a (8 1,82) chart for the Pearson family of 

distributions (Johnson and Kotz 1970a, pp. 14, 18). The lognormal line 

is below the gamma line or boundary of the beta distribution’s skewness/ 

kurtosis region.
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The power transformation has been used in an analysis of beta 

distributions by Cole (1975). He used this approach in developing a 

Bayesian reliability procedure for a U.S. Naval Reliability Guide 

Series (Bird Engineering 1974). Paragraph Al.4.3 uses the power trans­

formation with marginal beta p.d.fs. defined on [0,l]. The analysis 

illustrates a general approach which can be adapted to a number of other 

marginal distributions and transformations.

As a third alternative, an approximation developed by Boyd 

(1971) for beta distribution can be used. He showed that the r.v.

Z = 2Arcsinv/'x~ is very closely approximated by a normal distribution 

with

E(z) = 2 Arcsin (*~if)  ̂ Var(z) = (p+q-1)-1 p+q+i

where X is a beta r.v. with parameters p and q (equation A2.1(l) with 

a = 0, b = 1). The joint moments of the r.vs. X = i = l,...n are 

thus approximated by

Since numerical n-dimensional integration must be used to evaluate (1) 

the details of this approach have not been developed.

It is assumed in the subsequent analysis that the decisionmaker 

can estimate the product moment correlation for each pair of r.vs. that 

can be formed from the joint moments to be evaluated. The analysis is 

based upon a discrete value for each of these parameters. Thus, if a 

p.d.f. was specified for a particular correlation it would be necessary 

to integrate over this density function with respect to conditional
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values of the joint moments. The details of these extensions are not 

considered.

Al.4.2 A Logarithmic Transformation

In using a logarithmic transformation each known marginal dis­

tribution is in effect approximated by a lognormal distribution with the 

same mean and variance as the target marginal distribution. Thus, letting 

Z±, and X^ be r.vs. for a norma], lognormal and marginal distribution,

it is assumed that Y. = X. - 0.. and Z. = log(X.-0.). The parameter 0.1 X 1  1 ° 1 1 i
specifies the lower limit of nonzero probability mass.

It is also assumed that the required joint moments to be cal­

culated are relative to (0 i,...,0 ), and consequently of the form 
n

E( II (x.-0 )ri) where r. >_ 0 for i = l,...,n. It follows that 
i=l 1 1

E î=î xi-®î r̂  = E î21exp̂ ri log yi^ = E(exP(R"z))
where

R" = (ra,...,rn)

Z' = (zi,...,zn) = (log yi,..., log yn)

Now assuming that the random vector Z" has a multivariate normal 

distribution with tf* = (Pi,...,yn) and V = (c^j) = (Cov(zi}ẑ )) (where 

= a* ) it follows from (2) that (Johnson and Kotz 1972, p. 20) 

n 1

E^i2i(V ei)ri^ = exp R̂"U + ' <3)

Equation (3) gives the required joint moments in terms of the 

mean and covariance matrices of the multivariate normal distribution.

The equation also can be used to determine the numerical values for the 

parameters of this multivariate normal distribution. In order to
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insure that each lognormal marginal distribution has the same mean and 

variance as the initial marginal distribution, (3) can be evaluated 

using a single nonzero element of R = (ri,...,rk).

Thus, for 1 £  k £  n letting r = 1 or 2 and r. = 0 for i / kiC X
it follows from (3) that

yk + (1/2) aj = loglXxj^)] (4)

2yk + 2ak = los[E(V 0k)2J

Given numerical values for the r.h.s. moments of (4), the required

parameter values for and = afck are readily determined.

Equation (3) also can be used to determine the nondiagonal

elements of V given numerical values for the correlation between the

r.vs. X. and X.. Letting r. = r. = 1 with all the other r ’s equal to 
1 J 1 J

zero yields

B((*-0 )<* -0 )) = exp(y +y +(1/2)(a2+a*)-w ) (5)
J  J  J  J  J

The l.h.s. of (5) can be expressed in terms of the estimated

correlation, p(x^,x.) between x. and x. by observing that1 J
, . E(xjxj) - E(xj)E(xj) _ E((xj-9j)(x^-8 ^))-E(xj-9-,-) E(x-,-9j)
i’ j ~ [Var(Xj_) Varfr^Jv 7 LVar'Uj) Var(x^jJ'I7 2

Solving (6) for E((x̂ -0.j,) (xj~®j)) an^ substituting into (5) yields 

0.H = log [p(x x ) [var(x )var(xJ] 1/ 2 + E(x -0 )E(x -0.)]

- [y± + + (1/2) (a*-wj)]
In using the lognormal correlation model the E(x^-0^) and 

Var(x^) i = 1,..., n are first determined for the original r.vs. Next

equations (4) are first solved for »cr̂  k = l,....n. Now using these

results and estimates of p(x^,x^) equation (7) is used to determine the
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off diagonal terms of V. These parameters are now used in (3) to de­

termine the required joint moments.

Al.4.3 A Power Function Transformation

In this paragraph a correlation model is developed for low error 

rate r.vs. with leptokurtic and right skewed marginal p.d.fs. While 

these assumptions are often satisfied by beta p.d.fs., the analysis is 

not necessarily restricted to this distribution. However, the ease with 

which noninteger moments can be calculated for the beta distribution does 

make the procedure ideally suited for beta p.d.f.

For each r.v. X^, an integer k^ for the transformation Y^

= X1^ ^  is desired such that the r.v. Y^ is approximately normally 

distributed. The parameters k^ can be selected in many ways. Cole 

(1975), for example, assumed that a reliability r.v. T^= 1 - X.̂  had a

beta p.d.f. and suggested that k^ be an integer value such that the

E(tki) = 0.5

In the current development it is assumed that k^ is selected 

to minimize the skewness of Y^ = X^^i-. Using a third moment measure

of skewness it follows that the optimal k^ is a solution to

mjLn M y Jk.l
where

M Y , )  = E(y “E(y ) ) 3 = E(y3) - 3E(y?)E(y ) + 2E3(y )x x  x (8)
= E(x3/ki) - 3E(x^/ki)E(x3/k*) + 2E3(x*/ki)

When X^ is beta distributed r.v. it follows from Johnson and 

Kotz (1970b, p. 40) that

E(*J/ki) = B(p+r/ki,q)/B(p5q) r > 0 (9)
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Now setting r = 1,2, and 3 in (9) and using these results in 

conjunction with (8) it is possible to iteratively search for the opti­

mal k^. For instance, for p = 3 and q = 101 the integer k = 3 yields a 

very symmetric bell shaped p.d.f.

The optimal k^ can be used with equation (9) for r = 1 and 2
l /j,.to find the mean and variance of the r.v. = X/  1. Repeating this 

process for i = l,...,n yields the mean value vector U' and diagonal 

elements of V, the covariance matrix of the approximating multivariate 

normal distribution.

Defining b.̂  = 1/k^ and b.. = 1/k^, the off diagonal covariance 

elements of V are given by

C w ( y i>yj) = E(xjix^) - E(xJi)E(xJj) (10)

It is now assumed that x^i x^3 can be approximated by a two

dimensional truncated Taylor series with quadratic terms (Buck 1956,
b . b •p. 200). Expanding x^x^J about the mean values

mi = E(xi) mj = E X̂j^ (11)

and then taking expected values yields

E ( x ^ J )  s m^ j  + (1/2) (b.) (b .-l)m^i_2m ^  Var(x.)

(1/2) (b.) (b .-l)m^m^ 2 Var(x. 
3 3 i J 3)

+ bib^m^i“1m^j“1E((xi-mi)(x^-m^)) (12)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

157

Using the estimated correlation p(x ,x.) it follows that

E((x -m )(x.-m )) = p(x,x )[Var(x ) Vartx.)]1/2 
J j 3 ^ J

(1 3 )

The required off diagonal elements now can be found by substituting 

(11) and (13) into (12), and then in turn substituting (12) and (9) 

with r = 1 into (10).

Assuming that

termined by differentiating the multivariate characteristic function 

(Johnson and Kotz 1972, pp. 39-40)

While this procedure is convenient for lower order joint moments, the 

integers of (14) scale up the order of the required moments. A 

general expression based upon (15) for such higher order moments is 

neither apparent from the literature nor easily developed.

A more tractable procedure for evaluating (14) can be developed 

using equations determined by Bergstrom (1918). His formula for the 

joint moments of a standardized multivariate normal distribution can be 

adapted to computer processing. However, in order to use this procedure 

(14) must be written in standardized form. Letting Z = (Y^-jĵ / c^  and 

defining a^ = equation (14) becomes

(14)

it follows that the joint moments of the r.vs. can be determined 

from the joint integer moments of a multivariate normal distribution.

It is usually suggested that such multivariate moments be de-

5>(T) = exp(T'U + - | t "VT) (15)
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s ' J U 1) -
n ai

^ 5 , *ji=o
ai an
l - l

ji=0 Jn=0
Si=i *

n i-e ( n z^i)
i= l 1

(16)

Bergstrom's procedure can now be used to evaluate each expected 

value In the r.h.s. of (16). His results are given in terms of the cor­

relation matrix of the random vector Z = (Zi,...,Zn) defined by

R = = (Cov<y i’ yj ) / a i CTP
(17)

Bergstrom showed that* the 
a.! reij 1 ■J-n iin ai „ n i /J~n i.l \

E( H z.) = I n (2e..)!! n e..lJi-1 1 c 1=1. 11 M  1J - (18)
S * ”  j>i

where S is the set of all nonnegative integer valued solutions, 

S = ( e ^ ;o<i<j_<n), to the system of equations

2eu + ei2 +...+ e = ai (19)

ei2 + 2e22 +•••+ e = a2 2n

e, + e„ +...+ 2e = a in 2n nn n

and (2e )!! = (2e..)(2e -2)...4.2 ii xi ii

As an example, for n = 2 with ai = 4 and a2 = 2 equations (19)

have solutions s 

Now from (18) it follows that
l = (eu=l» e22=0 , ej2=2) and S2 = (en=2, e22=l> ei2-0)

p / » S 2 n 0 A L l iz .  1L . _£L _ -io_2E(z :z2) 2 ! j 2! 0! 4!! ' 12ri2 + 3

♦Bergstrom's notation has been changed slightly to clear up some 
ambiguities, correct a topographical error and put (19) into a more con­
venient form for computer evaluation. Berstrom also calculated a number
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The set S of solutions to (19) can be determined using a com­

puter search procedure. Table Al.4.1 illustrates for n = 4 how a set 

of nested "DO LOOPS" can be used to find the elements of S. Similar 

procedures can be established for other values of n. Rather than 

writing exact coding the table outlines the general approach of such 

coding using more convenient notation.

Table Al.4.1

A Computer Procedure for Evaluating the Equations A1.4(19)

DO 10 e u  = 0,I(ai/2)

DO 10 ezi = 0,I(a2/2)

DO 10 e33 = 0,I(a3/2)

DO 10 Bkk = 0,I(ai*/2)

DO 10 ei2 = 0, min (ai-2eii,a2-2e22)

DO 10 ei3 = 0, min (ai-2e22-ei2,a3-2e33)

DO 10 e2 3 =0, min (a2-2e22-ei2,a3-2e33-ei3)

eii* = ai - 2eu - ei2 - ei3

e2i* = a2 - 2e22 - ei2 - e23

£31* = a3 - 2e33 - ej3 - e23

IF (eu + e2i* + e3i* + 2ei*4 = ai») Store the e's.

10 CONTINUE

NOTE: I(ai/2) is the truncated integer quotient of a^/2.

of lower order moments using his method. These results correspond to 
similar calculations made by Wicksell (1919) using a characteristic 
function approach.
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APPENDIX 2

MOMENT, CUMULANT AND OTHER PROPERTIES OF 

BETA DISTRIBUTIONS

A2.1 Preface

This appendix brings together in a single source a number of 

distributional properties useful when working with beta distributions. 

Several general properties of moments useful in similar circumstances 

are also discussed.

In this dissertation the p.d.f.

a < t £  b

fg(t|p,q,a,b) = B(p,q)(b-a)P+q-r P > o q > o (1)
n = p + q > o

is referred to as an "extended" beta distribution in contrast to the 

"standardized" beta distribution defined on [0,l] with a = 0 and b = 1

and denoted by fg(t|p,q). When there is no possibility of confusion the

adjective "standardized" is not used when referring to the latter distri­

bution. The adjective "extended" has been adopted to avoid confusion 

with the term "generalized" beta distribution which has recently been 

used by Kattakkuzhy (1975) in another context.

In section A2.2 the noncentral and central moments for (1) are 

derived. While these are routine calculations, they are not available 

for reference in mathematical journals, or in standard sources such as 

Johnson and Kotz (1970), Raiffa and Schlaifer (1961) or, for example,
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in a recent collection of properties of distributions by Hastings and 

Peacock (1974).

Section A2.3 develops formulas for calculating the parameters 

of (1) using the moments of a target distribution to be approximated 

by (1). Special cases of the approximation with preset values for the 

parameters a and b, or only the parameter a, are also considered.

Section A2.4 derives recursive formulas for the cumulants and 

moments of (1). The cumulant derivations are based upon the work of 

Breitenberger (1959). The analysis adds some mathematical details and 

rigor to the Breitenberger development. However, the basic result 

remains as originally stated. Breitenberger*s contribution is em­

bedded in an obscure government technical memorandum and has apparently 

never been recognized by authors such as Johnson and Kotz or published 

in a mathematical journal.*

Section A2.5 gives a number of recently published miscellaneous 

results useful in error rate analyses. Besides presenting each result 

the discussion focuses on a few related issues not considered by the 

originating author.

The results of this appendix are used in this dissertation to 

proceed from beta distributions to their moments, or vice versa; to 

develop a moment approximation to the beta-normal distribution; and to 

approximate a sum of beta-normal r.vs. This latter task is conveniently 

developed in terms of cumulants since the cumulants of a sum of inde­

pendent random variables is just the sum of the cumulants of each

*An extensive search using reference sources such as the Infor­
mation Access Series (1973-1975), Science Citations (1967-1976), Mathe­
matical Review (1940-1972), etc., failed to uncover any references to 
Breitenberger's work or equivalent analysis.
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variable (see Johnson and Kotz 1969, pp. 20-21). This property of 

cumulants has motivated the dissertation's interest in cumulants as 

discussed in section A2.3. Formulas for converting cumulants to moments 

and vice versa are given by Kendall and Stuart (1958, pp. 68-71) and 
are not repeated here.

A2.2 The Probability Moments of the 
Extended Beta Distribution

Moment equations for the extended beta distribuiton can be de­

rived from the noncentral and central moments of the standardized beta 

distribution. In this section these standardized results are presented 

and then used to develop the moments of the extended beta distribution.

A2.2.1 The Noncentral and Central 
Moments of the Standardized 
Beta Distribution

The standardized form of the beta distribution is given by

setting a = 0 and b = 1 in A2.1(l) . The noncentral moments can be

easily derived by direct integration. This yields (Johnson and Kotz 

1970b, p. 40)

Ur(s) = r (p) T (p+q+r)

For integer r > 0, with n = p + q this reduces to

The recursive form of (1) is particularly useful when higher

moments are required. For r = 1,2,3,4 the nonrecursive form of equa­

tion (1) becomes
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U:(s) - *  yS(s) =n - n(n+l)

u'(s) = P.(P+D  (^2) p(p+l) (p+2) (p+3)
' n(n+l) (n+2) ^ s; n(n+l) (n+2) (n+3)

Equations for central moments in terms of noncentral moments 

follow immediately from the expected value definition. For r > 0 and 

Hq(s) = 1 it follows that

V s) = E83« t-^(s»r|p,q) = Egg( I (-l)k(J)tr'kMr(s)k)
k—o

= I (-i)k(J)yr(s>ky;_k(s) (3)
k=o

For r = 1,2,3,4 equation (3) can be evaluated using the noncentral 

moments of (2). Omitting some tedious algebraic manipulations, this 

yields

M s )  = 0
(4)

M s )  = M s )  - 3 M s )H2(s ) + 2 M s ) 3

= p(p+1)(P+2) _ o P2 (P+1) . ? p 3 2p(n-p)(n-2p)
n(n+l)(n+2) n2 (n+1 n 3 n (n+1 )(n+2)

y„(s) = yC(s) - 4 M s ) M s )  + 6yr(s)2y2(s) - 3\i'i(s)'

p(p+l) (p+2) (p+3) _ 4p2 (p+1) (p+2) , p3 (p+1) _ p**
n(n+l)(n+2)(n+3) n2 (n+1)(n+2) n3(n+1) n

_ 3p(n-p)[2nz+p(n-p)(n-6)1 
n (n+1) (n+2) (n+3)

A2.2.2 The Noncentral Moments of the 
Extended Beta Distribution

The moments, y^(e) for integer r > 0 are derived in terms of the 

noncentral standardized moments as follows.
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.TU) - F.c6(tr|p,q>a,b) - ft-a)rE<6( ( ^  + ̂ ) r)

Now making the change of variable y = (t-a)/(b-a) and expanding the re­

sulting expression (with yo(s)=l) it follows that

r
u;(e) = (b-a)rEs3( J  (£) yr"k ( ^ ) k|p,q)

k-o
r /̂ \ k . r-k / %. j (k )a ft-.) V k <s) (5)

k=o

For r = 1,2,3,4 equation (5) yields

lJi(e) = (b-a)yi(s) + a = (b-a) —  + an

y£(e) = (b-a)2y2 (s) + 2a(b-a)yi(s) + a2 (6)

= ib-af + 2a(b-a) n + a*

y 3(e) = (b-a)3ya(s) + 3a(b-a)2y2(s) + 3a2(b-a)y^(s) + a3

■ (b- a? S S I } + 3a<b- a>2£ £ i r + 3a2<b- a> i + a3

y£(e) = (b-a^yCCs) + 4a(b-a) 3ys(s) + 6a2(b-a)2y|(s)

+ 4a3(b-a)y{(s) + a1*

= (b-a)1* (P+2) (P+3) + 3q (h q\2 p(p+l) (p+2)
^  } n(n+1)(n+2)(n+3) ^  a> n(n+1)(n+2)

+ 6a2(b-a)2'^7^4- + 4a3 (b-a) £  + a1* n(n+l) n

A2.2.3 The Central Moments of the 
Extended Beta Distribution

The moments, yr(e) for integer r > 0 are derived in terms of 

standardized central moments using the expected value definition
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Vr(e) = Eeg ((t-yi<e))r|p,q,a,b)

Substituting for yj(e) from (6) and making the change of vari­

able y = (t-a)/b-a it follows that

Vr(e) = EeB((t-(b-a)Mr(s)-a)r) = (b-a)rEe3 ((|=|- Vi (s))r)

= (b-a)rEg3 ((y—1*1 (s))r Ip,q) = (b-a)riir(s) (7)

Replacing V>r(s) of (7) by (3) gives the alternative expression

r .

Vr(e) = (b-a)r I (-l)K(^)yr(s)%;_k(s) (8)
k=o

Using the equations for y^Cs) given by (4), equation (7) yields 

for r = 1 ,2 ,3,4

M e )  = 0  ' (9)

M e )  = (b-a) 2 (y 2 (s) -y i (s)) = (b-a

y 3 (e) = (b-a)3(y3(s)-3yi(s)y2 (s)+2y£(s)3)

„ _x3 2p(n—p) (n—2p)
" (b_a) n^^n+1 )(n+2)

y^e) = (h-a)1* (y £ (s) -4y i (s) y a (s )+6y i (s) 2y 2 (s) -3y i (s) **)

^.3p (n-p) [ 2n2+p (n-p) (n-6) 1 
1 ; nH(n+1)(n+2)(n+3)

A2«3 Using Moments to Fit an
Extended Beta Distribution

This section develops procedures for fitting an extended beta 

distribution to a target r.v. X with known central or noncentral moments 

The objective of this section is thus just the opposite of section A2.2
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where known parameters of an extended beta distribution are used to 

determine the moments. The analysis of the section is developed in 

terms of the central moments of the target r.v. to be approximated by 

an extended beta distribution. When the noncentral moments are ini­

tially available, the required central moments must be first calculated 

using

y2 ■ E (x -p i)2 = ]i2 - (yO 2 (1)

y 3 = E(x-yt)3 = y3 - 3y2yi + 2(yJ)3

yi, = E(x-yi)1* = yC - 4y3y{ + 6y2(yi)2 - BCyO*

A2.3.1 A Solution System

The analysis follows a rather standard procedure. The moments

of the extended beta distribution are expressed in terms of the distri­

bution's parameters. The target r.v.'s known moments (i.e., numerical 

values) are substituted for the beta moments and the resulting system 

of equations is then solved for the beta parameters.

One possible solution system can be immediately written down

using the equation A2.2(6i) for yi(e) and equations A2.2(9). However, 

it is possible to develop an alternative solution system using 

A2.2(l). This approach is particularly useful when the parameter a or 

the parameters a and b are already known. It follows from A2.2(l) for 

integer r > 0 that

Now making the change of variable x = (t-a)/(b-a), (2) can be written 

as
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Substituting (t-a)r = [(t-y^e)) + (pi(e)—a)]r into (3) and letting 

Po(e) = 1 , Ui(e) = 0 it follows that

<b-a>rJ , («k=o

On substituting into (4) Uj, y2 , U3 and yi, of the target r.v. it follows 

that

(b-a) £  = - a = ki (5)n

(b"a)25 ^ f  = y2 + (y'"a)2 = k2 (6)

(b~a)3 n (^lj~( ^ 2) = y3 + 3(^ ‘a) ^  + (y^ a)3 “ k3 (7)

(b~a)lt n"(n+l) (n+2) (n+3) = y* + 4 ^ ‘ a ^ 3  + 6 (y?-a)2y£ + (y^-a)1* = k„ (8)

where for subsequent reference the constants ki, k2 , k 3 and ki» are de­

fined as indicated.

A2.3.2 The Solution When the Constant 
Constant a is Known

Since the higher moments of a distribution tend to weight heavily 

the extremely right tail of a highly skewed r.v. it is advisable under 

these circumstances to stabilize the left side of a beta approximation 

by prespecifying the parameter a.* If this is possible, the remaining 

three parameters of the extended beta distribution are found by solving 

(5), (6) and (7).

*Pearson (1963) has examined the influence of tail probabilities 
on higher moments. Patnaik (1949) and Pearson (1959) have briefly con­
sidered similar issues in approximating a noncentral chi-squared distri­
bution by a chi-squared distribution.
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From (5) and (6) it follows that k2/kf = n(p+l)/p(n+l) or

n(p+l-c3p) = cip ( 9 )

where' c3 = ka/k?

Similarly from (5), (6) and (7) it follows that k3/kik2 = n(p+2)/?(n+2) or

where c2 = k3/kik2 

Combining (9) and (10) yields

p -    ilg iT .? 2 )  (
2c2 “ CJC2 - Cl

The solution sequence is p, n, q = n-p and then b. Using the 

moments of the target r.v. ki, k2 and k 3 are calculated. These are 

in turn used to calculate c3, C2 and then p, from which (9) or (10) 

can be used to calculate n. Finally b is determined from (5).

A2.3.3 The Solution When Both a

when both a and b are known. Using (5) and (6) a computationally simpler 

alternative procedure can be derived. From these equations it follows

n(p+2-c2p) = 2c2p (10)

and b are Known

Johnson and Kotz (1970b, p. 44) derive equations for p and q

that

p+1 _ k2/ki 
n+1 b-a (12)

Through simple algebra (12) can be solved for

( 1 3 )
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The solution sequence is to determine ki, k2 from (5) and (6 ).

Using (13) n is calculated. This is in turn used in (12) to calculate

p. Finally, q = n - p.

A2.3.4 The Solution When Both a 
and b are Unknown

For the general case when both a and b are unknown, a procedure 

paralleling the analysis of Elderton and Johnson (1969, pp. 57-58) can 

be used to solve equations A2.2(9) for (b-a), p, q. Equation A2.2(6i)

is then used to find a and b.

Johnson and Kotz (1970a,pp. 4, 44) also give (without proof) 

a solution based upon the Elderton and Johnson procedure. However, 

their solution implicitly assumes that the mode of the target r.v. is 

also known. Since the transition from the Elderton and Johnson nota­

tion is rather cumbersome, the desired solution is now derived using 

their general technique.

Letting I = (b-a), n = p + q, E = pq = p(n-p) equations A2.2 (9)

are

- 2I3E(n2-4E) l/2 
n 3(n+l)(n+2) (14)

= n1* (n+1) (n+2) (n+3)

In terms of the squared skewness and the kurtosis equations

(14) become

3i - y|/y! =2/,,3 _ 4(n2-4E) (n+1) 
3' y 2 ~ rTZIZoTZE(n+2)

3(n-KL)[2n2+E(n-6)1 
E(n+2)(n+3)

Bi(n+2 ) 2 _ n^ , 
4 (n+1) E (15)

&2 ■ y**/yi = 62 (n+2) (n+3) _ 2nf_ 
0r 3 (n+1) " E + (n-6) (16)
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and hence on subtracting (16) from (15)

Bi(n+2)2 82 (n+2) (n+3) „ . „ ,
“ 2 (3 5 )------------ 3(5 1 )----------- 8 -  n +  6 = - 0 * 2 )  (17)

Multiplying (17) by 6(n+1)/(n+2) and solving for n yields 

6(32-3i-6)
n ’ 3 8 1-2 6 2*  <18>

The solution for n given by (18) can be used in (15) to find
_2

E ‘ (19>

The solutions for n and E are then used in (14) to find

I = n ( ■(-U-)̂ -~fl) ) / (20)

From the definitions pq = E and p + q = n it follows that 

p2 - pn + E = 0, and hence

P = -|[n±(n2-4E)  ̂] and q = n - p (21)

where the appropriate root is selected so p > 0 , q > 0 and p < q if

1-t3 > 0. From A2.2(6i) it follows that

a = Ui - I(p/n) b = I - a (22)

The solution sequence is thus to first calculate 8i» 32 from 

U2 , y 3 and ytf; and then progressively calculate (18) through (22).

A2.4 Recursive Cumulant and Moment
Procedures for Beta Distrbutions »

The first part of this section presents a cumulant recursive

procedure for the extended beta distribution. A moment recursive

procedure for the standardized beta distribution is then presented.
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This latter result is also applicable to other distributions of the 

Pearson system of distributions. It is generally advisable to utilize 

these procedures when computing a large number of cumulants or moments. 

This is especially true in a repetitive sensitivity analysis where 

the increased calculating efficiency may become significant.

A2.4.1 The Derivation of a Cumulant
Recursive Relationship

Recursive formulas (14) through (18) below for the cumulants 

of the beta distribution (1) are derived in this section. The general 

approach of the analysis is due to Breitenberger (1959). Because of 

the obscurity of the source and general lack of recognition of the 

procedure, a complete derivation has-been developed from Breitenberger's 

brief analysis.

a > 0 8 > 0 (1)

From (1) it follows that

(2)

Letting

T = (a-l)b + (8-1)a (3)

equation (2) can be rewritten using (1) as

- f(t)[T-(a+8-2)t] 
W  “ (t-a)(b-t) ( 4 )
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Multiplying the denominator out and writing (4) in differential 

equation form yields

-t2f' + (a+b)tf' - abf'  + (cx+3-2)tf - if = 0 (5)

s tOn multiplying (5) by e and integrating from a to b, (5) can 

be written in the integral transformation form as

- M (t2f0  + (a+b)M (tf") - abM (£') + (a+g-2)Mo(tf) - t M (f) =0 (6) s s s s s

where
b

M g(g) = | estg(t)dt 
a

Thus, for the p.d.f. f(t) defined by (1) it follows that 
b

Mg(f) = | eStf(t)dt (7)
a

is the usual moment generating function.

The general approach now to be taken is to convert (6) into a 

differential equation with respect to the cumulant generating function, 

and solve for recursive relationships between cumulants. The required 

substitution formulas are obtained by differentiating (7), and in a sep­

arate derivation by integrating (7) by parts followed by subsequent

differentiation. This leads to* 
b

d 7 Ms(f) = \ eStCtf<t)] dt = Ms<tf) <8>

*These steps are only valid when a > 1 and 3 > 1 and hence 
£(a) = f(b) =0. However, it will be seen that the results are unaf­
fected by this restriction.
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D

- sMg(f) = | eSt[f'(t)]dt = Ms (fO (9)o
a

b
jd _
ds^ ““s(-SM (f)) =

b
_df _ (-SMe(f)) = 
ds'

eSt[t2f"(t)]dt = M (taO  (11)s

Letting M = M (f) it follows from (8) through (11) that (6) can s
be expressed as

( £ ) 2 (sM ) - (a4b)-jj(sM) + absM + (a+0-2)^-M - TM = 0 (12)

Now let K (f) = log M (f). On substituting the equivalent form, s sK (f)Mg(f) = e s into (12) and performing the indicated differenatiation
K ft)it follows on cancelling out the common factor e s that (12) reduces 

to a differential equation in terms of the cumilant generating function

s [<"+ ( iO2] + [a+8-(a+b)s]<^ + abs - [(a+b) + t] = 0 (13)

Now one solution of (13) is given b y < s(f) = l°SMs(fy Expanding

the cumulant generating function <s(f) into a Taylor series leads to

K(s) . k iS + ——  + ̂  s3 + ... (14)

k'(s) = <i + k zs + ̂  s2

"e \ , 2<3 . 3<it 2K (s) = K2 + -gj- s +  -Jj- S
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where by definition K. is the i ^  cumulant of the beta r.v.1

Equations (14) are now substituted into (13). By collecting 

terms for each power of s the desired recursive relationships can be 

found.

A2.4.2 The Recursive Relationship 
for Beta Cumulants

For s° the terms are 

(a+3)Ki - [a+b+y] = 0 

Using (3) this reduces to

(a+3)<i = ab+3a (15)

For s1

<2 + <f + (a+3) yf* - (a+b)ici + ab = 0

(a+3 +1)K2 = (a+b)<i - k§ - ab (16)

For s2
t

K3 + (<i^f + "yf <i) + (a+3) yj - (a+b) jf- = 0

(a+3+2)K3 = 2(a+b)<2 - 2[(q)ki<2 + (^)<2<i]

= 2(a+b)<2 - 4ki<2 (17)

For s3
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ft + + if it + ftKl  ̂+ (a+e) ft " (a+b)2»’ = 0
(a+3+3)io, * 3(a+b)<3 - 3[(q)k !<3 + (j)k2k2 + ( ^ ^ i] 

= 3(a+b)K3 - 6 (<iK3+k2<2) 

In general, for s11

(1 8 )

(a + 6 + n ) k (19)

Thus, with equations (15) through (19) the mean (<i), variance (k 2) and 

higher order cumulants can be determined for a beta r.v. Note that by 

using standard equations for converting cumulants into moments (Kendall 

and Stuart 1958, pp. 68-70), (15) through (19) can be converted into 

recursive relationships for the beta p.d.f. moments.

Even though the derivation of (15) through (19) is only valid 

for a > 1 , 8 > 1 , these equations are just algebraic identities valid 

for all possible parameter values. As a check on these results it 

can be shown that the first four cumulant relationships yield equa­

tions A2.2(9) for the central moments of an extended beta distribution. 

Also, as observed by Breitenberger, since (4) is the general form 

of the Pearson system of 1st degree differential equations (see 

Elderton and Johnson 1969, p. 35) the above method could be used to 

calculate recursive cumulant equations for any p.d.f. in the Pearson 

system.

A2.4.3 Moment Recursive Relationships
for Beta Distributions

The following result given by Bowman and Shenton (1973) without 

proof or reference gives higher central moments of any distribution of 

the Pearson system in terms of lower central moments.
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Vn+i = ̂ (P2+3)6*/2vn + W32-3Bi)Vn_1] (2 0)

where in terms of the notation for a standardized beta distribution

V. - 1, V, = 0, vn = taisi. (21)

A = 6$2 - 6Bi - 6 - n(2 &2-3£i-6) n

ft - h 3 (s) 2 _ lii»(s)
1 “ ]i2 (s) 2 p2 (s) 2

The following general recursive relationships between cumulants 

and moments are also given by Bowman and Shenton.

I (“T1)!?' .V. = V Vo = 1, Vi = 1 (22)x n-i i ni=0

n-1
E (ni1 )KT, iy-f = yn Vo “ 1. Vi » 0 (23)
i«=0

X ^ ^ V i ^ =  k  » *  -  1 . <2* >

Kiwhere V. is defined by (21) and k' = —  is a standardized cumulant.l 1 a1
Equations (20) and (22) can be used together to recursively 

calculate the cumulants of any distribution in the Pearson system. For 

standardized beta distributions this is an alternative approach to using 

the extended beta recursive formula (19) with a = 0, b = 1. Note also 

that (24) and (19) can be used recursively to calculate the noncentral 

moments of the extended beta distribution. However, when a = 0, b = 1,

the simple recursive procedure given by A2.2(l) should be used.
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A2.5 Useful Procedures for Error
Rate Analysis

This section gives a number of recently published results that 

can be useful in an error rate analysis. A procedure is presented for 

fitting a beta distribution using a specified mode and variance, for 

comparing two alternative prior beta p.d.fs. and for determining tail 

probabilities of a beta distribution. The literature of the product of 

beta distribution is discussed, a procedure is given for conducting a 

prior to posterior analysis in terms of prior and posterior moments, 

and finally a scaling result for extended beta distributions is derived.

A2.5.1 Fitting a Beta Distribution
Using the Mode and Variance

The moment methods of section A2.3 for fitting an extended beta 

distribution are useful when there is an empirical or theoretical basis 

for developing the required moments. In specifying a prior judgment 

more intuitive inputs are usually required. One approach is to specify 

an upper and lower boundary, a most likely value and a measure of confi­

dence.

In terms of an extended beta distribution these inputs cor­

respond to the domain parameters [a,b], the mode and the standard 

deviation (0 ). The mathematics of this approach are now summarized.

The algebraic steps leading up to (5) below can be found in Jacobs 

(1971). The subsequent details are new developments.

The mode of the extended beta distribtuion A2.1(l) with 

p > 1, q > 1 is given by (Johnson and Kotz 1970b, p. 41)

Mode (eg) - a + (b-a)Mode(sg) - a + (b-a)-?-"1.- (1)p+q-2
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Defining

M _ Mode(e3)-a
b-a (2)

A = p - 1 B = q - 1 (3)

equation (1) and equation A2.2(9ii) can be written as

_ a-m a
M

tt _ p(n-p) (A+l) ((B+l)» “ 2 T T 7 T  “ v .  ___ * 9 x  “ Tn(n+lT ~ (A+B+2) * (A+B+3) (4)

The two equations in two unknowns given by (4) reduce to the 

cubic equation

Thus, given a mode and variance, M and V can be calculated from (2). 

The cubic equation (5) is then solved for A. The results are used in 

(4i) and then in (3) to find p and q.

The maximum allowable value of V consistent with a 

non J or U shaped beta distribution is V = corresponding to the 

uniform distribution. For this value of V the constant term of (5) 

is zero, and consequently A = 0 is a solution of (5). From (4) this 

implies that B = 0, and hence the required uniform distribution values 

p = 1, q = 1 are implied.

one positive root. Over this domain the first and last terms of

(V)A3 + (7VM-M24M3)A2 + (16VM2-M2)A + (12VM3-M3) = 0 (5)

It is now shown that for 0. < V < equation (5) has exactly
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(5) are always respectively positive and negative. Thus, the number 

of variations in sign of the coefficients of (5) depend on the inter 

two terms. The possible number of variations in sign are given as 

follows.

16V - 1 —

Now 16V - 1 > 0 and 7V - M + M 2 < 0 imply 1/16 < V < — —  

or 7/16 < M - M2. However, M - M 2 has a maximum value of 1/4 at 

M = 1/2, and consequently three variations in sign are not possible

for 0 < V < 1/12. Therefore, by an extension to Descartes' rule of

sign there must be exactly one positive root (see for example, Richardson 

1947, pp. 240-243).

Approximation procedures for fitting a beta distribution using 

the mode and variance have been developed for use with PERT project, con­

trol. These procedures usually assume that o = (b-a)/6. With this as­

sumption a linear approximation, p/(p+q) = (a+4 Mode(e$)4b)/6, can be 

used. This avoids solving the cubic equation (5). The effect of these 

and other beta distribution assumptions are discussed by MacCrimmon and 

Ryavec (1964).

A2.5.2 An Information Ratio for Com­
paring Beta Prior Probability 
Density Functions

In evaluating alternative prior p.d.fs. it is convenient to 

have a measure of the impact of one prior p.d.f. relative to another 

alternative prior p.d.f. Draper and Guttman (1969) have proposed that

7V - M + M2 
+
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the ratio of the expected values of the posterior variance of the 

unknown parameter with respect to a given sample size be used as such 

a measure.

For a standardized beta p.d.f., f(t|r'jn'-r'), (A2.2(l) with 

a = 0 and b = 1) and for a sample size n with random outcome r Draper 

and Guttman have shown that the

Er<Var(t|r,n))

where the Er is the expectation with respect to the preposterior distri­

bution of r.

Now if the mean, yj, of an alternative prior is-the same, but 

the information content is kn^ rather than n^, the information ratio is*

Er (var(t|r,n)|r',n"-r")
Rn Er(Var(t|r,n)|r',kn'-r')

A  (kn̂ -t-l) (n+kn")
= k (n'+l) (n+nO W

n-Hcn̂
Rn = n+n^ ^or sma^1 k relative to kn" (7)

Thus, if a competitive prior represents k times as many equiva­

lent sample items as n', the expected relative reduction in the posterior 

variance with a sample of n is smaller than k. For example, given

n'- 60, k = 3 and n = 100 it follows from (6) and (7) that R = 1.73 andn
Rn = 1.75. For n" - 120, Rn = 2.09.

*Draper and Guttman define k slightly different. Our formulation 
leads, to the customary interpretation of equivalent prior sample and 
simplifies the final result.
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A2.5.3 Tail Probabilities for the
Standardized Beta Distribution

In evaluating a prior beta p.d.f. it is useful to determine 

tail positions of the distribution. In particular, one often wishes 

to fix a and solve for t in the equation

Fg(t J P,q) = V - V i - t ) q-1
»(P.ti ' dt ■ 1 - a (8)

Such inversion procedures are usually included in a computer 

statistical package of subroutines. However, in the author's experience 

they are not always designed for large values of q. Two recent approxi­

mations by Boyd (1971) and by Cole (1975) (see also, Bird Engineering 

1974, pp. 9-8 to 9-10) provide simple computationally efficient alter­

natives to a "canned" program.

Both procedures are motivated by reliability analyses and con­

sequently assume that the probability mass of the distribution is con­

centrated near one. These conditions can be generated in a low error 

rate environment with the change of variable R = 1 - t to (8). This 

yields
i

Fg(ta |p,q) = P[S>Ra] - fp(R|q,p)dR = 1 - a (9)
Ri-a-l-to

Both procedures are now restated in terns of the parameterization given 

in (9). Because of the way the approximations have been developed they 

should not be applied directly to (8).

Cole's approximation is based upon an iterative search for 

integer i using A2,2(l) such that y.T(s) = E(Ri) =0.5. It is then 

assumed that R* is normally distributed with mean and variance of
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Ui (R1) “ »J(sB) V>2 (R1) = \i'2i{s£) - y'(s3)2 (10)

This implies that

p(r > [zi_aii2 (Rx)l/2+  wI(Ri)]l/i) = 1 - a

where Z, is a unit normal lower tail value such that P(Z > Z, )=l-a. i-a ' —  l-a
Substituting from (9) and (10) the desired solution to (8) is then

t0 - i - - u'(s>2)1/2+ u'Cs)]^1 (U)

where the moments are with respect to f^(t|q,p) rather than fg(t|p,q).

Boyd expressed a cumulative beta distribution as a cumulative 

binomial distribution (Raiffa and Schlaifer 1961, p. 217) and then used 

the arcsin normal approximation to the binomial distribution. For 

fg(lt| q,p) this leads to 2 arcsinv^R being approximately normally dis­

tributed* with mean and variance of

Ui(2 arcsin/R) = 2 arc sin Vi(.2 arcsin/R) = (p+q-1) 1 (12)p+q-1

Using (12), equation (9) can be written as

= P (S i[Sin ! (I ^ J +  a r c i n g ) 172) ] )  - l - a

Boyd makes some computationally oriented adjustments to this 

result. This leads to the approximation

*0 " 1 • Rl-« * 1_ + arcSln(p+q>l/2) + (13)

*Boyd concluded that 2 arcsin R is normally distributed (p. 12).
This expositional error does not affect his subsequent analysis or
results.
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Boyd reported that for values of q > 40 the worst estimate with 

(13), observed over a wide range of p and q, was less than .003 away 

from the true value. He also gives several alternative forms of the 

approximation and discusses their use. Cole does not comment on the 

accuracy of his approach. Unlike Boyd's procedure it is only valid for 

unimodal distributions for which p + q > p  + l > 2 .

A2.5.4 A Survey of the Literature on
the Product of Beta Distributions

The distribution of the product of independent beta random vari­

ables has been studied by numerous authors. This work has been motivated 

in part by the Bayesian formulation of reliability theory, where the 

product of r.vs. arise in the analysis of series and parallel systems 

of components. The most complete analysis to date is given by 

Springer and Thompson (1970). They developed a closed form ex­

pression for the product of independent, nonidentically distributed 

beta r.vs. with integer parameters. This work encompasses the earlier 

work by Lomnicki (1967) and by Springer and Thompson (1966a,b) for the 

product of independent identically distributed r.v.

Several difficulties may arise in using the Springer and 

Thompson (1970) results for a product of beta r.vs. These results are 

extremely intricate and difficult to compute for the highly skewed p.d.f. 

that can arise in auditing work. The computer processing time required 

to compute these results could limit their use in a sensitivity analysis 

of an input parameter set. Further, it would be very difficult to de­

termine the moments of the product p.d.f. for input into subsequent 

steps.
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Particularly relevant to the focus of this appendix is the work 

of Jambunathan (1954), and Garner (1969). Jambunathan showed that for 

certain combinations of parameters the product of beta p.d.fs-. is also 

a beta p.d.f. Garner independently derived some of the results given 

by Springer and Thompson (1970). Of particular interest is his alter­

native derivation of the distribution of a product of beta random 

variables. This approach clearly demonstrates that the product of beta 

r.vs. can be expressed as an infinite mixture of beta p.d.fs. This is 

the same general form as a Jacobi orthogonal expansion.

Gamer also found that 95% confidence intervals for the product 

of two moderately skewed beta r.vs. could be approximated quite accu­

rately by a single beta p.d.f. with the same first two moments. Similar 

results for the product of 15 and 25 highly skewed beta r.vs. were ob­

served by Foard (1971).

Bird Engineering (1974) has also investigated this issue. They 

state without supporting details that "After comparing the plots of 

these exact curves with the beta fits to the first two moments for many 

examples, it was concluded that there was not sufficient differences to 

ever warrant the use of these highly untractable curves (the Springer and 

Thompson results)" (pp. 9-23).

A2.5.5 Prior to Posterior Analysis for 
a Bernoulli Process Using Only 
Moments

An easily derived result due to Mastran (1976) is now developed. 

Applying Bayes1 law to a binomial sample of r errors in n trials it fol­

lows for any prior p.d.f. f(p) that 
l

E(pm |r,n) = pm[kpr (l-p)n“rf(p)]dp (14)
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where the [...] term is the posterior p.d.f. of p with normalization 

constant k.

On expanding (l-p)n 1 (14) reduces to

E(pm |r,n) = K Y  (-l)i(nTr)E(pni+r"i) (15)
i=0 1

where the latter expectation is with respect to the prior p.d.f. The 

constant k is determined by setting m = 0 in (15) .

For example for r = 2, n = 100 and m = 4 equation (15) requires 

the calculation of E ( p 6 )  to E ( p 101^ .  In order to develop some insight 

about the numerical significance of these terms a beta prior of r' = 3 

and n' = 60 was used in this example. This led to numerically signifi­

cant terms given by E ( p 15)  to about E ( p lt5) .

In order to avoid problems of numerical precision it is helpful 

if such higher moments can be readily calculated. The lognormal distri­

bution is such an example. In this case

logE(pm+X+i) = (m+r+i) £ + -^(m+r+i)2 a2

where £,cr are respectively scale and slope parameters (Johnson and 

Kotz 1970a, p. 115).

A2.5.6 Scaling an Extended Beta 
Distribution

This section demonstrates that X = wT and Y = wT(w > 0) are 

both extended beta r.vs. when T also is. Thus the extended beta dis­

tribution is closed with respect to any positive or negative scaling.

The first case with w > 0 is quite routine. Applying this change of 

variable to A2.1(l) yields the. p.d.f.
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(—  - a) P” 1 (b - — )q_1 ±

£CX> ‘ B(p,q)(b-a, ^ +1 “ ' £6(xlp,(I,a” ’bw)

where aw £  x £  bw P > 0 ,  q > 0

In the second case where -w < 0 it follows that

f(y, = (? ~ a)P~1(b- ^ )q'1 X . [ y - ^ l l - T f - a ^ - v l P -1
B(p,q)(b-a)P+q_1 W B(q,p)[(-aw)-(-bw)]p+q_1

= f^(y|q,p,-bw,-aw) - bw £  y < -aw
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APPENDIX 3

ORTHOGONAL EXPANSIONS USING JACOBI POLYNOMIALS 

A3.1 Preface

In the development of the evidential integration model several 

mathematical difficulties arise. It is possible to determine the moments 

of several unknown p.d.fs. of the model but not closed form expressions 

for their exact p.d.fs. These inconveniences can be resolved using an 

"orthogonal expansion" for the unknown p.d.fs. This expansion expresses 

an unknown p.d.f. as an infinite series of polynomials based upon the 

known moments and a "weighting function." Since these summary moments 

can arise out of correlated functions of r.vs., an orthogonal expansion 

permits a natural extension to models of statistically dependent physical 

processes.

The following type of orthogonal expansion is investigated in 

this appendix

00
f(x) = I C w(x)p“ ’e(x) (1)

n=Q

In this expression w(x) is a weighting function proportional to a beta
Ct Rp.d.f., P * (x) is a Jacobi polynomial with n tdrms and C are constants n n

that depend upon the moments of the unknown p.d.f. The parameters 

a > -1 and $ > -1 can be arbitrarily chosen. This freedom is particu­

larly important with truncated forms of (1).

In the contents of this dissertation the Jacobi "system" of 

orthogonal polynomials offers several attractive features. The Jacobi
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expansion is analytically compatible with the "beta-normal" p.d.f. tech­

nique of Felix and Grimlund (1977) for combining error rate and error 

size data. Further, there is reason to believe that a parsimonious ap­

proximation to the unknown p.d.fs. can be achieved.

While the possibility of a Jacobi expansion for an unknown p.d.f. 

is generally recognized, very little has been written about the expansion. 

There is an application by Durban and Watson (1951) and several brief 

references (Kendall and Stuart 1958, p. 163; Wolf 1976). Pinney (1947) 

has developed some of the background mathematics. There does not appear 

to be a unified development of the subject such as provided by this 

appendix.

After introducing the auditing problems that motivate this re­

search, the discussion turns briefly to the current status of research in 

several areas of mathematical statistics which motivate the approach of 

this appendix. Next, several potential problems with orthogonal expan­

sions are discussed. These problems have motivated this dissertation 

exploration of the Jacobi expansion. After providing in section A3.3 an 

overview of the theory of Jacobi orthogonal polynomials, section A3.4 

develops the specific details for the Jacobi expansion of p.d.fs. Sec­

tion A3.5 analyzes the customary "Edgeworth expansion" for the "Gram- 

Charlier" orthogonal series, and shows how it might be applied to the 

Jacobi expansion.

A3.2 Motivational Issues

In order to motivate the extensive technical development of this 

appendix two possible auditing uses for an orthogonal expansion are now 

briefly discussed.
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A3.2.1 The Auditing Problem

The possible auditing applications of orthogonal expansions per­

tain to the analyses of i.c.ss., and the consolidation of the total error 

uncertainty for several stratum of accounts.

When posting entries for a given account are generated out of 

several i.c.ss. one expects that the auditor's expression of his total 

uncertainty in the account error rate will be a sum of products of r.vs. 

Each i.e.s. can be considered as a separate application of reliability 

theory leading to a composite error rate r.v. These i.e.s. composite 

r.vs. are then combined into a weighted sum.

Several authors have suggested that high skewed and leptokurtic 

beta distributions could be used by the auditor to represent his uncer­

tainty for error rates (see Felix, 1976; Felix and Grimlund 1977;

Francisco 1972). Since sample error rates observed in auditing typically 

are extremely small, the posterior p.d.fs. of these error rates should 

also be very leptokurtic and skewed. Further, one does not expect that 

there will be a sufficient number of i.e.s. to generate a usable central 

limit theorem effect when forming a weighted sum of i.e.s.

Similar observations can be made for the sum of r.vs. used to con­

solidate the total dollar error of several strata of accounts. It is 

shown in section A4.3 that the beta-normal p.d.f. suggested by Felix and 

Grimlund (1977) for representing the total dollar error in an account 

stratum can be approximated by a skewed extended beta p.d.f. with range 

[a,b]. In this second application one expects that the unknown summary 

p.d.f. will be a sum of skewed beta p.d.fs.
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For both of these applications, the sum of products of beta r.vs. 

and the sum of beta r.vs., there appears to be no published statistical 

research that directly considers beta distributions. In these cases the 

usual integral transformation theory (i.e., Characteristic Function, 

Mellin transformation, etc.), fails to yield tractable results. The only 

aspect of these steps for which a statistical theory has been developed 

is with the product of beta distributions (see paragraph A2.5.4).

A3.2.2 The Choice of the Jacobi
Orthogonal System

When using an orthogonal expansion for specifying an unknown 

p.d.f. it is often advisable to avoid using higher order moments. Prob­

lems can arise because of the extreme numerical sensitivity of the fifth 

and higher sample moments to single large observations. There also is a 

problem of developing an orthogonal expansion with multimodal behavior 

and possible negative ranges for the approximate p.d.f. It is generally 

believed that these difficulties become more prevalent when a large 

number of terms are used (see Johnson and Kotz 1970a, pp. 19,35; Kendall 

and Stuart 1958, pp. 159-161).

When the expansion will be used in subsequent analytical steps of 

an analysis it can be highly desirable to have a compact representation 

with only a few terms. These issues must be considered when probability 

distributions and logical relationships are available for generating 

higher moments. In such situations, it is possible in theory to compute 

additional terms of the expansion. However, these empirical convenien- 

iences do not necessarily justify the inclusion of the additional terms.

As discussed by Pearson (1963) the higher moments are predomi­

nately determined by the extended right tail of a leptokurtic and
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positively skewed distribution. Thus, besides the availability of these 

higher moments one must consider the reliability of the tail probabil­

ities of the source distributions.

These comments are particularly appropriate to the development of 

auditing models of i.c.ss. When Bayesian derived distributions with sig­

nificant prior judgments are used to represent the error rates within 

process steps, the reliability of the right tail probability must be 

considered. The exact nature of this p.d.f. tail may be just a byproduct 

of the judgmental specification procedures. These procedures may not 

emphasize the tail areas over which the decision maker is liable to have 

very little experience. In such cases the orthogonal expansion terms 

that are based upon higher moments are likely to have very little infor­

mational content.

A major consideration in constructing an orthogonal expansion for a 

p.d.f. is the previously mentioned possibility of generating multimodal 

expansions with regions of negative probability mass. These problems 

have been empirically studied by Barton and Dennis (1952), and Berndt

(1957) for the "Edgeworth" and "Gram-Charlier" series. These series are 

two forms of orthogonal expansions based upon a normal p.d.f. for 

weighting the associated "Hermite" polynomials. This work showed that 

in these Hermite expansions such problems are apt to arise when approxi­

mating skewed, leptokurtic distributions such as can be encountered in a 

Bayesian reliability model.

There are further questions of convergence of Hermite expansions 

when the unknown distributions are far from normal (see Cramer 1946, pp. 

223-224; Kendall and Stuart 1958, pp. 161-163; Pearson 1963* p. 95;
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Wallace 1958, pp. 635-636). The expansion is often used when the some­

what restrictive sufficient conditions for convergence are not satisfied, 

or when the rate of convergence inhibits the development of a parsimon­

ious expression for the approximation. When such conditions are relevant 

one is interested in the performance of the initial terms of the expansion, 

rather than the asymptotic properties of the series.

The above discussion suggests that it is best to match as near 

as possible the p.d.f. of the weighting component of an orthogonal expan­

sion to the anticipated form of the unknown p.d.f. The highly lepto­

kurtic and skewed distributions of an audit model of an i.e.s. suggest 

that a beta type Jacobi expansion may be more appropriate. This is a 

particularly appealing choice since the beta p.d.fs. can also "model" the 

more modest leptokurtic and skewness structure that will arise when a 

number of these extreme r.vs. are multiplied or added together. Finally, 

as is discussed in paragraph A3.4.2 the Jacobi polynomial expansion will 

usually lead to a uniform convergent series.

A3.3 The Jacobi Orthogonal Polynomial
System

Orthogonal polynomials are useful in a wide variety of applica­

tions such as numerical integration, physical systems with partial differ­

ential equations and probability analysis. There are several systems of 

orthogonal polynomials, each arising as a solution to a particular family 

of second order differential equations. Beckmann (1973) has developed a 

very readable and timely survey of the general properties and interrela­

tionships between different types of orthogonal polynomials.

It should be emphasized that orthogonal polynomials are nothing 

more than ordinary polynomials with the coefficients adaptly chosen so as to
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satisfy certain useful relationships. For each orthogonal system, there 

is a Taylor series expansion of a "generating function" which will yield 

all the polynomials of the system as the coefficients of the terms of the 

Taylor series. In addition the degree n polynomial of such a system is 

the n**1 derivative of the system's "characterizing function." Further, 

all the polynomials of a system satisfy an "orthogonalizing integral re­

lationship," and are functionally related to a hypergeometric function 

(see Bell 1968, p. 204).

A3.3.1 A Survey of Properties

The hypergeometric function is often used to define a system of

orthogonal polynomials. In particular the Jacobi orthogonal polynomial

of degree n with parameters a and 8 can be defined as

~ a n . (n) ,x-l. r
Pn (x) = (n^ ) 2Fi(-n,n-K*+8+l,a+l; = £ Ar ( 2 )

r=0

. (n) 1 (n+a+1) Y (n+r4a+B+l)
r = TCerti+UrCrtatSH) (1>

The notation 2Fi is used to indicate the Gaussion hypergeometric function, 

an important member of the generalized family of hypergeometric functions 

denoted by pFq (see Bell 1968, pp. 199,203-217; or Szego 1939, pp. 62-63).

Particularly relevant to this dissertation is the following 

orthogonal property of Jacobi polynomials (Bell 1968, p. 199).

f (l-x)a (l+x) 3 Pa,6 (x) Pa,3 (x) dx = ha,32a+3+1<5 (2)n m n n,m

where
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ha»B =  i r(iHtt+i)r(n+8+i) i 6 > m
n 2n+ct+0+l r (n+1) T (n-ta+8+1) P 1 W

5 = 1  if n = in,m

= 0 if n # i

cc 6Thus, the system of Jacobi polynomials {Pn* (x)} are orthogonal 

over the interval [-1, l] with respect to the weighting function 

w(x) = (l-x)a (l+x)^ and norm 2a+ +̂1 . These three attributes, an

interval, weighting function and norm, completely characterize a system 

of orthogonal polynomials. When a change of variable is applied to (2) 

to shift or expand the interval, the resulting polynomials are at times 

called shifted Jacobi polynomials.

There are only three combinations of intervals and weighting 

functions for which there exists an equation similar to (2). These three 

basic systems correspond to finite intervals, bounded from below or above 

intervals, and an unbounded interval. These lead respectively to the
filt

Jacobi, Laquerre and Hermite systems of polynomials each with an associ­

ated weighting function. There are numerous special cases of the Jacobi 

polynomials known as various types of Legendre and Chebyshev polynomials 

(see Beckmann 1973, pp. 65-66,76-78).

A3.3.2 The Jacobi Expansion

The orthogonal property (2) allows one to determine the coeffi­

cients of an orthogonal expansion of a known continuous function.
00

CC 6Assuming uniform convergence for a > -1, 8 > -1 of g(x) = \ C.P. (x)
i=l 1ct 8(Rau 1949-1950), it follows upon multiplying both sides by w(x)Pn’ (x) 

and integrating from -1 to 1 that
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C = ha,32a+6+i 
n -i

1 9 5

1
w(x) Pa,3(x)g(x)dx n

An unknown p.d.f. f(x) with known noncentral moments, (x), can 

be expanded using a slightly modified procedure. For example, for 

xe[0,l] it can be shown for a > -1, 3 > -1 that
00

f(x) = 2-(a+6)w(l-2x) I C Pa,3(l-2x) (4)
i=0 1

where
l1

C = o,B n hn
Pa ’3(l-2x)f(x)dx n

2-(a+3)w (1_2x) = xa (i_x)^ 

ct 3Since P^ (l-2x) is a polynomial of degree n, the r.h.s. integral of
ct 6(4) can be integrated termwise using (1). This yields C = D /hn n n

where

D = I (-l)r A (n)y (x) n r Kr 'r=0

For all three orthogonal systems there is an alternative formu­

lation to the type of expansion given in (4). This is based upon the 

following generalized Rodriquez formula (Beckmann 1973, p. 47).

w(y)Qi (y) = Ai(^)i[w(y)B1(y)] (5)

For Jacobi polynomials one has

Qi(y) = P^’3(y) w(y) = (l-y)a(l+y)3

A. = (-l)i/2ii! B(y) = (1-y2)
(6)
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Letting y - l-2x and noting for this changing variable that 

f(y> - (-2)1^ f (i-2X) 

it follows from (5) and (6) that (4) can be written as

«*> - I p - c 1(i)l [xa+1a - X)e+i] (7)
i=0

Since the [...] term is the kernel of a beta p.d.f., the expansion for 

f(x) is a linear weighting of derivatives of this density. In paragraph 

A3.4.4 it is shown that a truncated version of the expansion is a weighted 

linear function of beta p.d.fs.

A3.4 The Jacobi Expansion for
an Unknown p.d.f.

Orthogonal expansions of unknown p.d.fs. are discussed by Khamis

(1958) for Laquerre polynomials with gamma probability density weighting 

functions, and by Kendall and Stuart (1958, pp. 155-163) for Hermite 

polynomials with normal probability weighting functions. For Jacobi 

polynomials there has been some work done by Pinney (1947).

Pinney developed a moment oriented curve fitting technique which 

is in fact a truncated form of a Jacobi expansion based upon a beta 

probability density weighting function. Pinney derived a formula for 

fitting a curve defined on [0,1] to a set of N moments. In the process 

of deriving his results he drew upon the properties of Jacobi polynomials. 

However, he did not emphasize the orthogonal basis of the expansion.

There also are some fine points in his results that can be overlooked 

when routinely attempting to extend the procedure to, an arbitrary finite 

interval. Consequently Pinney's results are extended in this section to
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the interval (a,b) using the infinite orthogonal expansion framework of 

this chapter.

A3.4.1 The Development of the 
Expansion

Let f(x) be an unknown p.d.f. defined on the interval (a,b) with 

known noncentral moments vu(x) for i = 0, 1, 2,... Assume that for ap­

propriately chosen constants C^, there exist a uniformly convergent 

sequence such that

f(x) = 2"(0t+6)w(l-2(^)) I Cn p“ ’3(l-2(g)) (1)
n=0

Ct 6 Q. ftwhere {P^* (y)} and w(y) = (1-y) (1+y) are the usual Jacobi polynomial

system and weighting functions defined on [-1, l].

If (1) holds then the constants can be determined using the

orthogonal properties of {P^,3(y} }. Upon multiplying by P ^ ’3/^ p^x-a. \
b-a

and integrating from a to b (1) becomes
b b

pk’e(1_2(b S ))f(x)dx = 2"(a+e) I Cnn=0 3

• P“ !3(l-2(^j))dx (2)

With the change of variable y = 1-2 to the r.h.s. integral, itb—a
follows from A3.3(2) that the r.h.s. of (2) is equal to

l
b"a I C„ fw(y> P?’6(y) P“’3(y) = (b-a)h?,3C,-01+ 3+1 Ln n J"'-" *n '•J,/ w  “7“k v'kL n-0

Now the l.h.s. of (2) can be written as
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where this expression symbolizes the linear function of moments formed by

expanding into a polynomial in (j~) an<* replacing
for r = 1, 2 , . . k by 

b

M S  - j  cfEt>r «*><>* - j  (-1)1 ( [M V i"  <3)
a

Combining these results, it follows from (2) that

Ck = k ^  L-a ' (4)
(b-a)h£’g

From (1), (4) and A3.3(3) the Jacobi expansion is given by 

» Dn
f(x) = w(x) I ha,8 p“ ’6(l-2(gj)) (5)

n=0 n

where

w(x) = (x-a)a (b-a)8/(b-a)a+e+1

D = Pa,8(l-2U ( ^ ) )  n n v H b-a '

.a,8 _ 1 T(n+a+1)r(n+B+1)
n 2n+a+8+l r(n+l)r(n+a+B+D

Note that w(x)/B(a+l, 8+1) is a beta p.d.f. defined on [a,b].

From A3.3(1) it follows that

Pn’S^ " 2(b5 ^  = \  (_1)r (6)

where

. (n) _ _1_ ,nv T (n-Kx+1) T (n+r+a+8+1) 
r n! r T(a+r+1)T(n+a+8+1)

Combining (5) and (6) leads to
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f(x) * w(x) I a (7)
n=0

where

n A ^ D
a = I (-1)T a (r~)r with a = - r ""pf1 n r"g n,r b-a n,r ^ »

From (6) it follows that

D = Pa,0(l-2y(~)) = I (-l)r A (n)y (8)n n v H b-a" r“Q r r b-a

Equations (7) and (8) with a = 0 and b = 1 correspond to the results 

given by Pinney for a finite sum.

A3.4.2 Uniform Convergence

The analysis of the last paragraph has assumed that (1) is uni­

formly convergent to the unknown p.d.f. A theorem due to Rau (1949-1950) 

is now used to show that a numerically insignificant modified version of

(1) is uniformly convergent for all continuous f(x) defined on [a,b].
00

Rau showed that the series J (C /2a+^+1)Pa,^(y) withn n n=0
l

C = 1n .a, 8 -i
g(y)w(y)p“ ’^(y) dy w(y) = (l-y)a (l+y)^ (9)

is uniformly convergent on (-1, 1) to g(y), provided that g(y) is con­

tinuous on [-1, l] with at least piecewise continuous derivatives.

In order to apply Rau's theorem to (1) note that with the change 

of variable y - l-2(r— ), equation (1) can be expressed for ye(-l, 1) asD™3

» w  - f ( a X ((b~ ; y +a) - 1 do)n=0
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where

ff((l-v)(b-a)/2+a) _a,8.C. = ha,B
nc -  c ° o x )

-i

The series (10) can be modified slightly to conform to the re­

quirements of Rau's uniform convergence theorem. The weighting function
g

w(y) is replaced by w£(y) = (1-y+e) (1+y+e) for £ > 0. The coefficient 

is replaced by

C(e) n " ha ’3 < 1 2 >£

Now the new series for g£(y) defined by the [...] term of (12)

satisfies the conditions of Rau's theorem and is uniformly convergent in

(-1, 1). Now since (12) is true for all £ > 0, w(y)/w£(y) can be made
( e )arbitrarily close to 1, and hence of (12) can be made arbitrarily

close to of (11). Similarly w£(y) can be made arbitrarily close to 

w(y). Thus, to any desired degree of numerical precision g(y) of (10) is 

equivalent to the uniformly convergent series g£(y).

A3.4.3 Properties of the Truncated 
Series

Pinney showed that a truncated form of (7) with a = 0 and b = 1

has the same moments as used by (8) in constructing (7). The subsequent

discussion for the arbitrary interval [a,b] closely follows Pinney's deri­

vation, and leads to the same conclusion. It is assumed that the moments

U (r— ), n = 0, 1,..., N are known and that Uo = 1. n d—a

The derivation is based upon the observation that for 0 m < N

there exists constants A , (k = 0, 1,..., N) such thatm,k
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(j^a m y pa.P/,
b"a k-0 m,k k

m „a,B/
( 1 3 )

For example for m = 2, in the notation of (6), equation (13) implies that

(Si)2 - A  [A(,)] + A [A(l)-A(‘><S*)] b-a 2,0 o 2 . 1 0  i b-a/J

+ A [a (2)-a <!) (Si) + A (:) (Si) 2]
2»2 o i b-a 2 b-a7 J

where the [...] terms represent the orthogonal polynomials of

. por this case the appropriate constants could be found 

by solving the following linear system.

A (o) A + A (l) A + a (2> A = 00 2,0 0 2,1 0 2,2

A (l) A + a <2> A = 0l 2,1 1 2,2

a <2> A = 12 2,2

By the nature of the way the constants are determined, it follows that 
m

V ? E i>  =  J  a  *
,01,6/

k=0
(14)

Defining f^(x) as a truncated version of (5) with N terms it follows 

from (13) that

(pf>mfTN(x)dlt ‘ <15>

n  V k  pu ’V 2< f E f » ] i > M  f hc?6 p“-s(i-2(^))]dx
k=0 n=0 n
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The r.h.s. of (15) can be simplified by making the change of 

variable y = 1-2 (jj^) and then applying the orthogonal relationships 

given by A3.3(2). This leads to

m m

k=0 ’"•k ka k=0 m,k k

The latter two equalities follow from (5iii) and (14). Since 0 ^  m <_ n, 

(16) implies that the first n moments about a of fTN(x) are equal to the 

corresponding moments about f(x).

It is now shown that this is also true for the noncentral moments 

about 0. Equation (3) is first expressed in matrix form for r = 0, 1,..., 

m. On cancelling out the common (b-a) factors this yields

’yi(x-a)” 
•

•

•

_y  (x-a). m

l-a+0... 
l-2a+a2+0... 
l-3a+3a2-a340.

r y i W

y _ ( x ) .m

(17)

As a consequence of (16) the l.h.s. of (17) represents the iden­

tical moments of f^(x) and f(x). Now as a result of the shifted diag­

onal structure of the m x m matrix of (17), this matrix is of full rank 

with a unique inverse when a # 0. Thus (17) can be inverted and used to 

demonstrate that the r.h.s. column vector is the same for both f^(x) and

f(x). In particular this implies that y (x) of f(x) is equal to y  (x)m m
of fTN(x), for 0 < m <  H. Thus the N-moment orthogonal approximation 

perserves the first N-moments of the target distribution.
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A3.4.4 The Selection of a and 8 and a 
Linear Function of Beta p.d.fs.

In order to consider how a and 3 might be selected, it is conven­

ient to express (7) in an alternative form. Observe first that (7) 

contains a series of polynomials in y = (r— -) of the formD”o

a - (a +a y) + (a +a y+a y2) - ... (18)0.0 1,0 1,1 2,0 2 , r  2,2

Now, when (7) is truncated after n = N, terms of equal power in (18) can

be collected together. This yields

( w
r=0 n=r

Recalling from (5) the definition of w(x) , it follows from (19) 

that f^(x) is a linear function of N + 1 beta r.vs. with coefficients

(a+l+r, 8+1) for r =0, 1 N. Further, if a and 8 are selected so

that

aN,N “ 0 and aN-i,N-i ~ aN,N-i = 0 (20)

then (19) will have at most N - 1 nonzero terms, and will still

have the same moments, Pj(x), for i = 0, 1,..., N as f(x). This choice

of (a, 8) is particularly attractive when a parsimonious approximation of 

f(x) is desired.

For N = 2, if (20) is satisfied then (19) reduces to

fT,(x) = w(x)[a -a +a ]■̂2 0»0 1 j 0 2*0

Now since f_„(x) is a p.d.f., [a -a +a 1 = B(a+1, 8+1) and a and T2 0,0 1,0 2,0
8 can be determined using the standard formulas of section A2.3.3 for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

204

finding the parameters of a beta distribution given its first two moments 

and [a,b].

Using the definition a = A ^ D  /ha ’^ from (7), equation (20)n,r r n n
becomes

a ( n) d  a (n_ 1 )d  a (n ) d
- J L J  = 0 and J f c O f c t . f t ! "  .  0 (23)
h, o,3 ,a,3
N V x  S

Observing that > 0 for k > 0, (23) reduces to

d n = 0 and °N-1 = 0 (2A)

Equations (24) can be expressed in terms of a and 3 as follows.

Defining S^ and letting yr = Hr(^I~)» follows from (8)

and (6) that

* - ? r n rn!A^i. _ _r(n4o+l) y . n r,n.r(n+r4a+B+l) r„n
n rt0 ( 1} r r " r(n+a+3+l) ^  ^  V  Fta+r+lT (25)

It follows from (25) that

50 = 1

51 = (a+1) - (a+B+2)yi

52 = (a+2)(a+1) - 2(a+3+3) (a+2)y 1 + (a+3+4) (a+3+3)y2

and in general 

n
S = I S (l,i) S (2,i) S (3,i) (26)
H  q  XL LL LL

where
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S (i) = n

Sn(3) = (_1)1(l) Ui.....(-l)n(?Un]

Equation (26) provides an efficient way of computing D = S /n!n n
when calculating fjj(x) or when using an iterative procedure to solve (24) 

for a and $. In case (24) does not admit a real valued solution with 

a > -1, 8 > values for (a,8) can be determined using the procedure

previously considered for N = 2.

A3.5 An Edgeworth Expansion for a
Jacobi Series

In using a truncated orthogonal expansion there is an alternative 

developed by Edgeworth to simply truncating the series A3.4(1) after the 

first N terms. While the procedure has been discussed in the literature 

with normal p.d.f. weightings as an alternative to the Gram-Charlier 

series, the Edgeworth expansion procedure can be generalized and applied 

to other orthogonal systems. As will be seen, the procedure may be use­

ful when approximating the p.d.f. of a large sum of somewhat similar in­

dependent r.vs.

It is well known that a Gram-Charlier series will not always con­

verge monotonically; that is the order of importance of terms does not 

correspond to the order in which they are generated. This empirical 

pattern can arise when the coefficient of the (N+l) term is significantly

(a+n) ... (a+1) 
(a+n)...(a+2) 
(a+n)...(a+3) 

•
• Sn (2) =

1
(a+8+n+l) 

(a+8+n+l)(a+8+n+2) 
•

1

. f 
I—t

8w

_______1

(a+8+n+l)...(a+8+2n-l) 
(a+8+n+l)...(a+8+2n)
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thinfluenced by the N and lower moments. Thus, a series truncated with 
tilthe N term because the moment is unreliable, will not give good 

results if the coefficient of (N+l) term is dominated by lower moments 

which are reliable.

A3.5.1 The General Edgeworth Expansion
Model

The Edgeworth expansion is based upon a model of how these cir­

cumstances could arise. While the assumptions of the model are generally 

not satisfied, the model can at times provide greater predictability than 

other relevant alternatives (see Johnson and Kotz 1970a, p. 19). The 

model is based upon the assumption that the unknown r.v. X is the sum of 

n independent identically distributed r.vs. Y. Under these circumstances 

it can be shown that the cumulants, <r(z) and ^(w), of the standardized 

r.vs. Z = (x - pi(x))/a(x) and W = (y  - yi(y))/a(y) are related by 

k («) = Kr (w)/n(r/2)_l (Cramer 1946, pp. 224-225).

Since <r (w) is independent of n, each cumulant of z will have a 

different order of importance. Note that the rankings given by this 

derivation is only one of many possible rankings that can be created by 

altering the initial assumptions. Now in general, since each coefficient 

of an expansion is composed of several cumulants, the coefficient will 

have several components with different orders of importance. In devel­

oping an Edgeworth expansion of order n only those components of order n 

or less are utilized.

In applying these concepts to the Gram-Charlier series, the 

mechanics of the analysis tends to obscure the underlying procedure and 

several theoretical issues that must be considered. While the usual
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discussion does not emphasize it, the following general steps are taken 

(see for example Cramer 1946, pp. 221-230).

1. Each coefficient is expressed in terms of cumulants, K^,

rather than moments, K* r
2. Each cumulant is replaced by an expression that exhibits 

its order

3. The expression is truncated at a given order

4. The truncated expressions are converted back to moments 

which are then used to calculate the Edgeworth coefficients.

Combined formulas for applying steps 1 and 2 can be developed 

from the central moment to cumulant equations given by Kendall and 

Stuart (1958, p. 70). Assume as previously indicated that the r.v. X is 

the sum of n independent r.vs. Y. Now the moments of Z (the standard­

ized form of X) can be expressed in terms of the cumulants W (the stand- 

ardized form of Y) by substituting Cramer's result, <r(z) = <r(w)/n 

into the Kendall and Stuart equations. Letting (w) the resulting

formulas for applying steps 1 and 2 are

Ml (z) = <i(z) = 0

M 2 (z) = «2 (z) = 1

M 3 (z) = - 17T

Ml»(z) = ~  + 3 (1)

Ms(z) = — 377 + lO^yr

M6 (z) “ ̂ f- + 1 5 7 7 + 10^- + 15
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M z )  - - 57T  + 21 -gfe- + 35 + 105

ys (z) = * 3- + 2 8 ^  + 56* ^ -  + 35<| + 210^- + 280^- + 105 na ir n* n^ n n

In accordance to step 3 an order n expansion is given by tun-

cating all terms greater than order n in (1). The Edgeworth coeffi­

cients of step 4 then are determined by reconverting the remaining cumu­

lants into standardized moments. This leads to approximation equations 

which can be used in place of higher moments in calculating the coeffi­

cients of series expansion. Letting vl = y^z) it follows that

y2(z) = 1  (2)

y3(z) = y3

y«*(z) = yn

y5(z) = I0y3

y6(z) = 15 (yi*-3) + 10y| + 15 

y7(z) = 105y3

y0(z) = 210 (y^-3) + 280yf + 105

In addition for n 9» it can be shown that

CnU> • ,<-.)/» Ms (nodd) (3)

 ̂ (y)! 2n^2 72>(r— )l 2<'n~6^ 2 ^  ^

+ n ’ (yi*-3) (n even)
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Equations (3) and (4) are derived by applying an Edgeworth ex­

pansion to the equality yr = f(Klf k2  <T) given by Kendall and

Stuart (1958, p. 68). In our notation for standardized r.vs. with 

<1 = 0  and <2 = 1 » the terms of order n or less of this equality are

Equations (3) and (4) are determined by writing out the coefficients of 

these terms and setting the standardized cumulants k2 = 1 , <3 = y 3 and 

Ki* = yi*-3.

When the order n moments of (2), (3) and (4) are substituted into

expressions for the coefficients of the Gram-Charlier series (see Kendall 

and Stuart 1958, p. 157) the expansion reduces to a finite number of 

terms. This is true for any order of truncation of a Gram-Charlier 

series (see Cramer 1946, pp. 228-229). With an Edgeworth expansion of a 

Jacobi series, the series resulting from any order of truncation is not 

finite. The convergence of this series will be considered subsequent to 

the following algebraic development.

A3.5.2 The Jacobi Form of the

(4) were developed for standardized r.vs. with yj = 0 and y2 = 1. Thus 

in applying the model to the Jacobi series of A3.4(5) the expression 

A3.4(8) for the coefficients of the series must be converted into a 

standardized form. Observe first that

(n-<»)/2 and < 3  k 22 (n-6)/2

Expansion

In order to simplify the Edgeworth expansion model, (2), (3) and

( 5 )
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Combining (5) with A3.4(8) leads to

°n = j 0  ( - 1 , r  ^  X  <6 >

Through steps similar to those used to develop A3.4(19), equa­

tion (6) can be written as

r -(n),, /X-ui (x)D = I (-l)r Bw y ( n r rrv a(x) ) (7)

where

_ r ,i, /a+ui(x)vi_rzO0 0  \r. (n) 
" r£ 0 V'' o(x) ' ' b-a' r

Since in (7), hi = 0  and U2 = 1, the Edgeworth order n approximations of

(2), (3) and (4) can be directly applied to (7). Note that for an order 

n approximation, U5 (X  ̂ t*ie ^owest standardized moment to be

approximated.

On carrying out these steps repetitively, one determines that D ,n
an Edgeworth order n approximation for D of (7) or A3.4(8), is given by

n r! B ]
AD ■n y rn /r' 1 O*/2r=0 {jj ! 2

—

'■r even ;

r! B(n)n

2(r̂ >71 
r odd

U  3

n r! B(n)

rL  72-<^)! 2(r-S)/2
r even

y| +
n r! B ^

r=4 24-<^>! 2(r-‘>/2 
r even

(VU-3) (8)

where u, = and y. = * . [ 8 ^
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In particular, for n = 0, 1,..., 8 equation (8) for the order n expan 

sion is

Do = Do = B0Co) Di = Di = B ^  D2 = D2 = B0(2) + B^z)

D3 * D 3 = (Bq 3)+B23>) - B3(3)U3

D„ = D* = (B0(,,)+ B ^ )+3b J,,)) - B ^ ^ j  + Bj^Cy^-3)

D s = (B0(5)+B2(s)+3bJ5)) - (B^5)+10B5(s))y3 + bJs)(^-3)

De = (B$6)+b £6)+3B$6)+15B^6)) - (B^6)+10B^6))U3 

+ 10b!6M  + (B̂ 6̂ +15bI6̂ ) (Uit-3)

D 7 = (bJ7)+B^?)+3B$7)+15B^7)) - (B^7)+10BS7)+105BS7))y3 

+ 10B67^y! + (bS?)+15B^7))(y.,-3)

De - (Bo8)+b|8)+3bJ8)+15B6(8)+105b|8)) - (B^8)+10B^8)+105B$8))y3 

+ (10B6(8)+280B9(8))y| + (b J 8)+15B6(8)+210B8(8)) (y.,-3)

I 12The order n Edgeworth expansion, based on the first three 

standardized moments, can be obtained from (8) and (9) by setting y§ 

and (yi*-3) both equal to zero. Again the coefficients are not neces­

sarily zero for large n, and questions of convergence are relevant, 

discussion now turns to this issue.

A3.5.3 Convergence of the Edgeworth 
Expansion

In paragraph A3.4.2 it was seen that Jacobi series defined by 

A3.4(1) (or equivalently A3.4(7)) is numerically equivalent to a

( 9 )

The
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uniformly convergent series on the open interval (-1, 1). Thus, for

any ye(0,l) or xe(a,b) the sequence {a } of A3.4(7) converges. Now inn
order to manipulate freely the terms of {a^} and form other sequences 

that always converge to the same value, it is sufficient that the se­

quence {|an |} absolute values converges. Without absolute conver­

gence, infinite subseries or rearrangements of {a } and their subseriesn
may converge to other values or not converge at all. In fact any condi­

tionally convergent series of real terms can be rearranged to converge 

to any desired value (see Apostal 1957, pp. 367-369).

In order to generate from A3.4(7) an Edgeworth expansion with the 

infinite series specified by the approximation (8) two steps are neces­

sary. First, parenthesis must be removed from the factor 
n r ( )D = ( ) (-1) g'- 'p ) of A3.4(7) and second a subseries must be formedn r=o r n

from the more detailed series formed in the first step. If in the first 

step the number of new terms introduced by removing each parenthesis is 

bounded independent of n and the resulting terms approach zero then re­

moving parenthesis will preserve converges (see Apostal 1957, pp. 357-

359). In general the second step can only be performed if the series

resulting from the first step is absolutely convergent.

Equation (8) shows that the number of components of the Edgeworth 

expansion are not bounded as n increases. Consequently, the first step 

will not necessarily preserve convergence. With the numerous minus signs

embedded in A3.4(7) there is no reason to believe that (a } or a moren
detailed series formed by removing parenthesis will be absolutely con­

vergent.

These comments are all directed at sufficient conditions for 

utilizing the convergence of {a^} in determining the convergence of
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related series. Since these sufficient conditions are not satisfied, 

the performance of each related series would have to be determined from 

more fundamental principles. This is not considered since the asymptotic 

characteristics of the expansion is of no particular consequence to the 

manner in which the Jacobi expansion could be used.

The usual Jacobi series is obviously preferable to the Edgeworth 

approximation when complete information is available about the moments 

of an unknown p.d.f. and the numerous terms of an asymptotic expansion 

are acceptable. Thus the Edgeworth expansion of a Jacobi series may be 

of value when information about moments is limited and/or a parsimonious 

representation is desired. Under either of these circumstances the 

asymptotic properties of the Edgeworth expansion are not particularly 

relevant. It is the initial and midrange properties of the expansion 

that are important when truncated series are used. Similar circumstances 

and conclusions have been discussed by Cramer (1946, pp. 223-224) for the 

Gram-Charlier series.

In these situations the relevant question is if the series should 

be truncated with, for example, the fourth moment, or if the unreliable 

higher moments should be approximated in accordance with a model of sup­

plementary information. The Edgeworth expansion is, of course, only one 

model of such information. Regardless of the asymptotic properties of 

the expansion it is possible that the initial terms of the expansion may 

add meaningful information. Referring to (2) it is seen that the first 

approximation of an order n Edgeworth expansion occurs with the fifth 

moment. Thus, one must choose between using the unreliable fifth moment, 

not specifying its value, or using for example an order n Edgeworth 

approximation.
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APPENDIX 4

PROPERTIES OF THE BETA-NORMAL DISTRIBUTION 

A4.1 Preface

This appendix discusses the beta-normal total error distribution 

(Grimlund 1974; Felix and Grimlund 1977). The distribution's first four 

central moments, stated without proof in the latter paper, are derived in 

section A4.2. A new result giving noncentral moments of any order is 

also derived in section A4.2. Section A4.3 demonstrates that the beta- 

normal skewness and kurtosis approach the skewness and kurtosis of the 

component beta distribution when the total number of transactions, x* is 

large. The kurtosis result is new. However, for completeness, both 

results are given. Section A4.3 uses these results to discuss the use 

of the gamma and extended beta distributions as approximations to the 

beta-normal distribution. It is assumed that the skewness and kurtosis 

are equal to their asymptotic (large x) values.

The beta-normal distribution represents a continuous process .%at 

only assumes a nonzero value when one state of a Bernoulli process occurs. 

In auditing, this state can represent an error, a defective or obsolete 

item, a credit default, etc. Given that this state has occurred, there 

is then a second process representing the amount of the error, the re­

quired writedown, the amount of default, etc. It is assumed this latter 

process is normally distributed. The beta-normal distribution could be 

used to model customer behavior, natural resource exploration, or any 

other activity with two stages of uncertainty.
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The Bayesian formulation of the procedure is particularly useful 

when low "error rates" are encountered in the preliminary Bernoulli 

process.* The procedure is based upon Bayesian natural conjugate anal­

yses for the Bernoulli "error rate" process and the normal "error size" 

process. The resulting beta error rate distribution and the normal- 

gamma 2 distribution for the parameters the normal process are then 

consolidated into a single marginal distribution for the total error 

size in the population. This leads to the beta-normal density function 

defined by
l

fgN(V fg(p|k,n)fN (irT |ap,l/bp)dp (1)

where ap and 1/bp are the mean and precision of a marginal distribution 

for the total error amount in a population with error rate of p. Thus 

the variance of this distribution is bp.

The parameters a and b of (1) are defined by

a = XUiOO = X® (2)

b = XUzOr) = x ( ^ ) ( ^ * S ) v
n

where x is the Bernoulli population size, and yiCir) and P2 OO are the

expected value and variance of a student distribution for the marginal

distribution of the size of individual errors. The parameters m, v, v, and 

are used to define the prior or posterior form of the normal-gamma 2 

distribution.

*The problem that motivates the beta-normal analysis is known in 
mathematical literature as a random sum of random variables. A non- 
Bayesian analysis for determining the characteristic function of such a 
random sum can be found in Feller (1966, p. 478). An expansion for the 
distribution function of a random sum has been developed by Marsh (1973).
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A more detailed description of the beta-normal distribution can 

be found in the above references. A major inconvenience with the distri­

bution is that the integral of (1) is not tractable. However, since the 

moments can be determined by switching the order of integration, a number 

of analytical approximations are possible. The results derived in the 

subsequent sections of this appendix are useful in this respect.

A4.2 Moments of the Beta-Normal
Distribution

The moments of the beta-normal distribution can be calculated by 

switching the order of integration and utilizing the moment properties 

of the component normal and beta distributions.

A4.2.1 The First Four Central Moments

yi(BN) = "tW ^ t = f6(p> V N (v dV p

apfg(p)dp = ayjCg) (or in condensed notation ayi) (1)

The variance can be determined using the expansion (u^-ayi)2 

= [(TrT-ap) + a(p-yi)]2. Accordingly,

y a ( 8 N )  =

■“i * •
[(7 rT - a p ) 2 +  2 a ( ir rr- a p ) ( p - y i )  +  a 2 ( p - y i ) 2]

(TrT-aui)2feN(7rT)dirT

■ l v p)

• W dV p

[bp+-a2(p -y 1) 2] f g(p)dp = by! (8) + a2y 2(8) (2)

The third central moment follows from the expansion

References to several studies of the asymptotic properties of random 
sums also are given by Marsh.
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(irT-ayi)3 = (ty-ap)3 + 3aOy-ap)2(p-yi) + 3a2(irT-ap) (p-yi)2 + a3(p-yi?

Observing that the odd central moments of a normal distribution are zero 

and that

p (p -y i)  = [(p -y i)+ M i](p -y i)  = ( p - y i) 2 + y i( p - y i )

it follows that 
1

y 3(BN) = fg(p)[0+3abp(p-yi)+ 0+a3(p-yi)3]dp

= 3aby2(3) + a3y 3(3) (3)

The fourth central moment follows from the expansion

(irT-ay1)lf = (i^-ap)* + 4a(iTT-ap)3(p-yi) + 6a2(irT-ap)2(p-yi)2

+ 4a3(irT-ap) (p-yi)3 +a‘*(p-yi)If

Noting that the kurtosis of a normal distribution is 3, and hence 

yi*(N) = 3y2(N), and that p(p-yi)2 = (p-yi)3 +yi(p-yi)2 it follows that
l

yi* (3N) = |fg(p)[3b2p2+0+6a2bp(p-y1)2+0+a't(p-yi)‘*]dp

= 3b2[y2(3)+y2(3)] + 6a2b[y3(3)+p1(3)y2(3)] + a V ^ )  (4)

A4.2.2 The Noncentral Moments

A general expression for noncentral moments of the beta-normal 

distribution can be determined using the binomial expansion and the gen­

eral expression for the central moments of a normal distribution (see 

Kendall and Stuart 1958, p. 60). From A4.1(l) the r noncentral moment 

is
00f

y^(3N) = 7rTf8N^T^dTrT ~ fg(p) f jĵ 7rT^d7rTdp
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Now since

i£  = [(VaP)+aP3r = I ( J ) ( V ap)k(ap)r~k (5)
L 1 k=0

0k (k!) * ,y, (N) = —  ---- ----  for k even
k 2k/2[(k/2)!]

= 0 for k odd

it follows that

- j „  $  4 £ ^ -(k!)

i
r-k k/2 .p p fg(p)dp

k=0 2 ' [(k/2)!]
k even. I (r . (6) W
k=0 k 2k/2[(k/2)!] r_k/2 
k even

where l-^-k/a^ is defined by A2.2(l).
A4.3 Skewness. Kurtosis and Ap­

proximations to the Beta- 
Normal Distribution

In this section the asymptotic skewness and kurtosis of the 

beta-normal distribution for large X are determined. These results 

are then used to study the robustness of approximations to the beta- 

normal distribution based on gamma and extended beta distributions.

A4.3.1 Skewness and Kurtosis

The following derivation shows that the skewness, [8 i 31 /2, 

and the kurtosis, 6 2 Or^), of the beta-normal distribution approaches 

the skewness, /]37> and kurtosis, 8 2 * of the component beta distribution 

as the number of transactions or accounts increases. The skewness of 

the beta-normal distribution is considered first.

It follows from A4.2(2) and A4.2(3) that
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Tft (tt M 1/2 - U3 (BN) _ a3u3+3abii2[e‘ CV J  - rva(BW]<7T ■ [bimi’mJV* (1)
where the moments Uj, y2 and y3 are all with respect to the component 

beta distribution.

Observing that y3 = /Siyf/2 equation (1) can be written as

IY / ii1/2 ( a y2 ^3/2 , / 9a b2y2 \i/2L B i C O ]  = 774.02,, ■) so-* ,a)

= ( 1 I f— iWa!lvl V A*l+(b/az) (yi/y2) H(b/az)yi+y2] 3̂ (2)

From A4.1(2) it follows that b/a2 = [yl(tt)/y|(tt)]/x- Hence 

for large x

b/a2 = 0 (3)

Consequently from (2), [&i (t̂ )]1/2 -*/]3i as X " •

From A4.2(2) and A4.2(4) it follows that the kurtosis of the 

beta-normal distribution is

a \ . y<»(Bn ) _ al>yit-f6a2b(y3+yiy2)+3b2(y2+y2 )
B2(V  y2(BN) " auy2+2a2byiy2+bzyi

. (b/a2)(y3+yiy2)+3(b/a2)2(y24y?)
y2+2(b/az)yiy2+(b/az)zyi

Since from (3) b/a2 = 0 for large X> it follows from (4) that

B2 = yi*/y|. This is just $2 , the kurtosis of the component beta

distribution.

For a numerical example of these results discussed by Felix 

and Grimlund (1977), it can be shown that the beta-normal skewness

(4)
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converges faster than the beta-normal kurtosis to the limiting beta 

distribution values. For this example (with p = 6, n = 120 and 

b/a2 = 1/x) the following comparisons can be made.

✓ 3i (ttt) (tt)

X = 1000 .749 2.63

X = 5000 ‘ .746 3.77

Limiting Value .745 3.77

A4.3.2 Gamma and Beta Approximations
to the Beta-Normal Distribution

In the examples considered by Felix and Grimlund (1977) gamma 

distributions were found to approximate quite adequately the beta- 

normal p.d.f. These observations are systematically investigated in 

this paragraph for large values of X* The analysis leads to the conclu­

sion that the robustness of the gamma approximation increases with 

higher values of n and decreases with lower expected values for the 

component beta distribution. Thus the gamma approximation may deteri­

orate somewhat with moderate beta priors over low error rates. It is 

suggested that the extended beta distribution be used as an approxima­

tion to the beta-normal distribution.

Since a gamma distribution is a limiting form of a beta distri­

bution for which 2$2 - 33i = 2̂ 1*/pf ~ 3lJf/y| = 6 (see Elderton and 

Johnson 1969, pp. 40-46), an ordinal measure of the robustness of the 

gamma approximation for large values of X is given by (232-33j)/6.

Thus, the approximation should perform best when this expression is 

near 1.
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This expression can be converted into a more meaningful form by 

substituting the central moments from equations A2.2(4). This yields

bution should adequately approximate the beta-normal distribution. The 

effect of the approximation can be further investigated by observing 

that

Substituting (6) into (5) and observing that Ui = p/n it follows

that

From (7) it is seen that small values of Pi can counteract the effect that 

a large n has on improving the accuracy of the gamma approximation to the 

beta-normal p.d.f. This effect was empirically observed by Felix and 
Grimlund.

It is suggested that the extended beta distribution defined by 

A2.1(l) be used to approximate the beta-normal p.d.f. The four

(*P x p(n-p)[2n2+p(n-p) (n-6) 1 /n“ (n+1) (n+2) (n+3) <202-301 >/6 V ' ^ p ^ / n ^ n + l ) 2------------

2p2(n-p)2(n-2p)2/n6(n+1)2(n+2)2 
p*(n-p)3/nb(n+1)3

/n+lx 1 r2n2+p(n-p) (n-6) 2n2-8p(n-p)-i
n+2 p(n-p) L n+3 ~ n+2 (5)

If (n+3) is approximately equal to (n+2) then (5) reduces to 

(^|) • Since this is in turn approximately equal to 1 a gamma distri-

(n+2) (n+3)
1 (6)

(26,-360/6 -

/■n+l\ r •, 2/(hi (1-y i))+(n-6)-i 
W ' L (n+2) (n+3) J (7)
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parameters of this distribution allow the first four moments of the beta- 

normal to be fitted exactly. This is in contrast to the three moment 

fit of the gamma distribution. The asymptotic skewness and kurtosis 

properties discussed in paragraph A4.3.1 suggest that a truncated form 

of the beta-normal distribution is a scaled up standardized beta distri­

bution for the x values of greatest interest. This is, of course, ex­

actly what an extended beta distribution is.

Paragraph A2.3.4 gives a simple algebraic procedure for calcu­

lating the parameters of the extended beta approximation given the first 

four central moments. Equations A4.2(l) through A4.2(4) can be used to 

determine the required central moments of the beta-normal p.d.f. These 

equations are based on the beta-normal constants a, b and central moments 

of the component beta distribution. These parameters can in turn be de­

termined by using A4.1(2) and the standardized beta moment relation given 

by A2.2(4).
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APPENDIX 5

A POISSON-GAMMA MODEL FOR THE COMPOSITION OF 

ERROR RATE AND SIZE UNCERTAINTY

A5.1 Preface

This appendix develops an alternative model to the beta-normal 

procedure of Felix and Grimlund (1977) for combining error rate and error 

size uncertainty. Rather than considering that errors are generated from 

Bernoulli and normal processes, Poisson and gamma processes are utilized. 

Individual errors are assumed to arise from a Poisson process with the 

size of the respective errors following a 2-parameter gamma distribution.

The primary advantage of this approach is that the gamma p.d.f. 

can represent both symmetric and nonsymmetric processes for the size of 

errors. However, the accompanying Poisson process with a single param­

eter does not provide as robust a representation of error intensity, as 

the beta p.d.f. of the beta-normal procedure.

The choice of the gamma distribution is somewhat arbitrary. 

Possible alternatives to the gamma distribution that also can represent 

skewness and mimic a normal distribution include the Weibull and the log­

normal distributions (see Johnson and Kotz 1970a, pp. 117,253). These 

alternatives are reviewed in section A5.2.

Very little Bayesian theory has been developed for the 2-param­

eter gamma distribution process under the assumption that there is uncer­

tainty about both the process skewness and scale (or variance). Lwin 

and Singh (1974) have developed a discrete prior to posterior analysis
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for the skewness parameter of the 2-parameter gamma distribution. These 

authors do not indicate any earlier work on this problem, a conclusion 

the present author also has reached.

In section A5.4 a natural conjugate joint density for both the 

skewness and scale parameters of the gamma distribution is developed. 

While the basic Bayesian properties of this new distribution are derived, 

the moment properties and possible forms of the distribution have yet to 

be investigated. These Bayesian properties of the distribution are used 

to model the auditor’s prior and posterior uncertainty about the gamma 

error size distribution.

Section A5.3 discusses the use of the Poisson distribution as a 

model of error rate uncertainty. The implications of several different 

sets of assumptions are examined. In section A5.5 the error rate theory 

of section A5.3 is combined with the error size theory developed in sec­

tion A5.4. This leads to several different total error distributions 

based upon Poisson and gamma distributions. These distributions corres­

pond to the beta-normal distribution disc .ssed in appendix 4.

The results of this analysis are not as tractable as the equiva­

lent beta-normal theory. There are also unresolved questions as to how 

these difficulties can be surmounted. Finally it is not immediately 

clear how these Poisson-gamma models can be integrated with a model of 

an i.e.s. The analyses of all these issues would be a major research 

task, perhaps worthy of future consideration. This appendix lays out the 

basic framework of this alternative approach. However, given the com­

plexity of the audit process, no attempt is made in this dissertation to 

develop more completely this alternative model of the integration of 

audit evidence.
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A5.2 Alternative Approaches

This section briefly considers the Weibull and lognormal distri­

butions as two possible alternatives to the gamma distribution for rec­

ognizing skewness in the distribution of error sizes. There appears to 

have been very little work done on Bayesian prior to posterior procedures 

based upon either the Weibull or lognormal process. Thus the current 

discussion is limited to the analysis of Soland (1968,1969) and Kaufman 

(1963).

Soland developed a Bayesian analysis for a Weibull process. He 

showed that the lack of a sufficient statistic of fixed dimensionality 

rules out the possibility of constructing a natural conjugate distribu­

tion for the Weibull skewness parameter (see Raiffa and Schlaifer 1961, 

pp. 44-47). However, as shown by Soland (1969), it is possible to de­

velop a discrete prior to posterior analysis for this parameter. These 

fixed dimensipnally difficulties do not arise with gamma distributions. 

Thus, since the gamma distribution models approximately the same skew­

ness and kurtosis configurations as Weibull distributions (see Rousu 

1973), it seems preferable to the Weibull approach.

Another approach for recognizing a skewed distribution of error 

sizes is based upon the lognormal distribution with p.d.f.

f (x|y,h) = ~  exp{--|h(log x-y)2} (1)
L / 2tt X L

where

0 < x < 00 o < h < 00 — < y < oo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

The parameters y and h are the mean and precision of the underlying 

normal p.d.f. of (1). The mean, y^, of the lognormal distribution is 

then given by

Assuming that the precision h is known, Kaufman (1963, pp. 161- 

162) showed that the lognormal distribution f^Cy^lm'+l/^hjn^h) is a 

natural conjugate prior for y^. This analysis can be extended to the 

more general case with the precision, h, unknown using the analysis of 

Raiffa and Schlaiffer (1961, pp. 300-301) for the normal distribution. 

It can be shown that a natural conjugate joint prior for (1) in the 

metric (y,h) is given by Raiffa and Schlaiffer's normal-gamma 2 joint 

density.

In the metric (U^.h) the equivalent natural conjugate joint 

density is given by

where f is a gamma 2 p.d.f. (Raiffa and Schlaiffer 1961, p. 226).

Several of the steps used to develop the beta-normal distribution 

are equally tractable with the lognormal distribution. However, a major 

difficulty arises in finding the distribution for the sum of r lognormal 

distributions. Or alternatively, the same type of problem arises in 

finding the distribution of the sum of r marginal error size distribu­

tions, where these marginal distributions have been found using the 

prior or posterior p.d.fs. to integrate out the lognormal parameters.

As will be seen, the gatrnna error size approach developed in sec­

tion A5.4 avoids these summation difficulties. However, the natural

log Ul = y + l/2h (2)

fLy2^ L ’h  ̂ = fL ^ L lm"+1/2h»n ĥ) fY2(h lv^>v") (3)
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conjugate relationship and several other steps of the gamma approach are 

not as tractable as these aspects of a lognormal approach. Thus the 

introduction of skewness with either the Weibull, lognormal or gamma 

distribution leads to analytically inconvenient results.

The focus of this appendix on the gamma distribution is motivated 

by such analytical considerations. Currently there is a complete lack of 

auditing research which might suggest what type of model of the error 

size process is most appropriate. While this appendix looks at skewness 

alternatives to normality, there is always the possibility that models 

that incorporate variations in kurtosis might be more appropriate.

A5.3 A Poisson Process and Sampling 
for Error Rates

A Poisson process can arise under a number of very different cir­

cumstances. This section examines these issues and develops an appro­

priate mathematical model for each set of assumptions.

A5.3.1 Physical Processes and 
Sampling Procedures

Two very different scenarios can be used to motivate a discus­

sion of a Poisson process. First it can be assumed that there exists an 

ongoing physical process which generates errors such that one's uncer­

tainty about the total number of errors to be generated corresponds to a 

Poisson mass function. Second, in certain circumstances it can be 

assumed that a sampling procedure for investigating an extant popula­

tion's total number of errors generates a Poisson sampling process. In 

this second case it is not necessary to make any assumptions about the 

conditions under which the errors were generated.
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In both cases the Poisson process usually arises as an approxi­

mation to a Bernoulli process with a very low error rate. In the first 

case it must be assumed that there is a constant probability of error 

affecting each item of the population. In contrast, the second case is 

not affected by a highly correlated error generating process. The popu­

lation is just a pool of in error and not in error items. This leads to 

a constant probability that a given random sample item will be in error.

Corresponding to these two scenarios are two different objectives 

and resulting prediction models. In the first case interest focuses on 

predicting the error intensity of a production process. The second case 

is concerned with predicting the actual number of errors present in a 

collection of items generated by any process.

The external auditor's analysis of error rates usually corres­

ponds to the second case. However, internal auditors, systems analysts 

and consultants may be interested in predicting future events rather than 

in just controlling their uncertainty about existing events. For these 

objectives the first case may be of interest. The validity of the pre­

dictions resulting from this case are, of course, dependent upon the 

error rate consistency of the process over time.

A5.3.2 An Ongoing Poisson Process

In the first case interest focuses on the unknown intensity, A, 

of the process. The parameter A can be thought of as the expected number 

of error items per unit. In an accounting environment it may be conven­

ient to think of say = 1000 elements per unit and avoid nonintuitive 

intensities of less than one. For a process generating X units, or N^x 

elements, the probability mass function for the total number of items in 

error is given by
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f p (r |A X) -  e "Xx (Xx)T/ r !  (1)

If each element of the process is generated by a Bernoulli 

process with a very small error rate,p , then (1) can represent a 

Poisson approximation to the binomially distributed total number of 

errors. Under such circumstances the expected value and variance of 

the binomial mass function are given by

y r )  = (NuX)p Varb(r)= O g O p U - p )  = (Nup)

Defining X = pNu» the Poisson mass function (1) has the same expected 

value and variance as the approximated values for the binomial mass 

function.

A5.3.3 Poisson Sampling of an 
Existing Population

A Poisson likelihood function can arise in this second case 

through a Poisson approximation to the binomial sampling process. Alter­

natively a gamma distribution approximation to a Pascal sampling process 

can lead to the Poisson likelihood function. In both cases the kernel 

of approximating likelihood function can be shown to be

£U|r,x) * e"XxXr (2)

where r is the observed number of errors in x population units (or xN^ 

elements). In both cases the Poisson likelihood is only used to repre­

sent a sampling procedure. No assumption has been made about the nature 

of the process which originally generated the population.

The nature of the approximation is now considered for the Pascal 

case. For Pascal sampling, r is predetermined and a random number of
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observations, n = xNu, is observed. The p.d.f. for this sampling pro­

cess is

fpa(n |p,r) = (”3i)pr(n-p)n"r (3)

where

Epa<n) = |  Varpa(n) = fr (1-p) (4)

Now for p «  1, and n = xNu equations (4) become

EPa(x) = pN^ Varpa (x) = “(pNu)* (5)

Defining X = pN^ the moments of (5) are just those of a gamma 

p.d.f. for a continuous representation of the number, x, of units ob­

served in order to locate r errors. The corresponding p.d.f. of x is

fYi(x|r,X) = xr_1e"Xx (6)

Thus rather than assuming a Pascal sample with the p.d.f. given 

by (3), it is assumed that there is a single observation x drawn from

(6). The likelihood of this observation for fixed r is given by (2).

Now the gamma p.d.f.

.r'-i -t'XX  e
Y ‘ <£>r r(r')

is a natural conjugate prior to the likelihood kernal (2). Consequently, 

the posterior p.d.f. given this prior is

,r""-i -t~X
f U | r " , t " )  = ^ 5— S  (7)Yl (4,)r r(r")
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where t"  = x' + r t" - t' + x. This result is utilized in section 

A5.5 for combining error rate and error size information.

A5.3.4 Poisson Sampling of a

The prior two paragraphs have considered an ongoing Poisson 

process and sampling procedures that generate approximate Poisson pro­

cesses. The composite case of Poisson sampling from a Poisson process 

is now briefly considered.

of errors that a Poisson process will generate in processing X units. 

More typically the past output units of a Poisson process are examined 

in order to estimate X. Except for the likelihood now being an exact 

representation of the process, rather than an approximation, these esti­

mating circumstances correspond to Poisson sampling. Equation (7) again 

gives a natural conjugate posterior distribution for X.

Since the nature of the error generating process is assumed to be

Poisson, the marginal distribution of r can be derived using (1) and (7). 

From Raiffa and Schlaifer (1961, p. 284) it follows that

Thus, the probability of r in error events in x process units is given 

by a negative binominal distribution. This result will be utilized in 

section A5.5 for combining error number and error size information.

Poisson Process

If X is known then (1) represents one’s uncertainty in the number

00

0
(8)
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A5.4 A Gamma Distribution for 
Error Size

This section develops a prior to posterior analysis under the 

assumption that identified errors have error sizes distributed according 

to a gamma distribution. A natural conjugate distribution is developed 

for the skewness and scale parameters of the gamma process.

A5.4.1 The Basic Result

Assume that each error, tt, is a realization from the gamma dis­

tribution

A natural conjugate joint p.d.f. for the skewness, a, and scale, 

parameters of (1) is given by

(1)

where y is a known location parameter. Thus when r errors are observed,s
the likelihood function for the sample is

Jt(ct,B|Tr1,...TT ) = - i )- gars e_B*s 
s T(a)rs

where

irp = (tti-y) —  <TTr -y) and TTg = (tri-y) +...+ (irr -y) (3)
s s

f(ct,B|a',bV',d') = f(a|a',b',c',d')f (6|<xc',d') (4)

where

( 5 )r(a)
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1' = ((kOa- (a-CA  da k' = a'I{d')c'
o rfa)

Q«c" -Bd"

(6) 

<?>

a" > 0 b">0 c" > 0 d' > 0 b ' > c 0 < k ' < l  (8)

A5.4.2 The Natural Conjugate Relationship

Delaying for a moment questions of under what conditions the 

integral (6) exists, the natural conjugate relationships of (4) can be 

demonstrated by forming the product of (2) and (4)

f (a,8H(a,B)

_ a' (a')a~1 r(ac') (d')ac' ac' -&d' . *p * parB -Birs
"  1 <d')ac' r(a)b ' ' r<ac'> 3

(a"?"1 r(ac~) (d " f C rac"

« " ) ae" 7 w r ' e <9)

where

a = a 7T b - b' + r (10)P s

J <■* . _  ^ A * ,= d + T r  c = c + rs s

From (9) it can be seen that the kernel of the posterior joint

density is of the same form as the prior joint density given by (5) and

(7). Note that since it > 0, irg > 0 and rg > 0 equations (10) preserve

the inequalities given by (8). In particular

+ + a ft + TT 7T
k "  = -------   7T =    <    -x • P < "P < 1

(d")c <d"-Hrs)C (d"+irg)rs (d')C ttJ8 ttJ®
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The last inequality follows from (3) on expanding irrs. Equations (10)s
indicate the sample equivalence of the prior constants a', b', c", d 

and how an intuitive noninformative prior judgment can be established by 

setting a' = 1 and b' = c' = d' = 0 in the posterior density.

A5.4.3 The Existence and Calculation of 
the Skewness Integral

It is now shown that the improper integral (6) exists, and hence

(5) is a proper p.d.f. It is only necessary to show that for large a* 

the ratio of the gamma functions of (5) is less than one. Since 

0 < k < 1, it follows then from the convergence of

kada =
00

e:-<-l°Sk>adC. = 1/(-10*10

that (6), with an integrand less than k for a > a*, must also converge 

(see Buck 1956, p. 89).

That the required ratio is less than one can be shown using 

Stirling's Maclaurin series

1 1 r (_1)k"lBklogr(x) = (x--)logx- x + -  log 2tt+ I ---------- -r—  (11)
Z Z k=l 2k(2k-l)x 1

where Bi, B2 ,... are Bernoulli numbers t, •••o JO

From (11) it follows that

log r(ac)
r(a)b = logr(ac) - b logr(a)

- a l o g<-^) - ^  + (b~-̂ a- + (b-c)a
(.-l)k_1B1

- (b-l)log2TT+ I ---:-----------(c"(2k_l)-b) (12)
k=l 2k(2k-l)a
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Now for large a the first term of the infinite sum in (12) ap­

proaches 0. Since the terms of the summation are monotonically de­

creasing in absolute value, all subsequent terms also approach zero. 

Dropping these near zero terms (12) becomes 

c
2 a[log(-f— )+(b-c)] + l£=!lioga- - (b-l)log 2ir (13)

a 1 1

Since b > c, for large a the [...] term of (13) approaches -00. Now when

b < 1 the second term of (13), [(b-l)/2] log a, also approaches

Consequently when b < 1, (13) and hence (12) approach -00. When b ^  1, it

follows for large a that [(b-l)/2] log a < a and hence (13) is

c
< a[log(-^) + (b-c) + 1] (14)

Since for large a (14) approaches -°°, (12) also approaches -°°. Thus for 

b > c the gamma function ratio approaches 0 and the integral (6) con­

verges.

Equation (12) can also be used to express the normalization con­

stant I of (6) in a more compact form for numerical integration. Writing

(6) in exponential form (without prime notation) and substituting (12) 

yields

I =
*
exp{alog +log [r(ac)lh }da

'1 00 _r(a)b_
1
k.i exp{k.2a+[-(b-c)a+(b-l)/2] loga + S(a)}da (15)

where

, vb-i 1/2
k x =  ( 2 tt)  c
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C , ,, \ , ,c.ck2 = log k + log c + (b-c) = (b-c) + log a Or)

The exponential form of (15) will eliminate some of the numerical 

problems associated with evaluating gamma functions. The author has 

found this same technique to be useful in evaluating beta and gamma 

p.d.fs.

A5.5 Total Error Distributions

The analysis of this section combines the results of section A5.3

for the number of errors and error rates with the error size results of

section A5.4. The analysis proceeds in three steps: the determination

of the conditional error size distribution given r errors and parameters 

a and 3» the determination of the marginal distribution for r errors; and 

finally the determination of the unconditional total error distributions.

A5.5.1 The Conditional Distribution

The conditional error size distribution for r errors with gamma 

parameters a and 3 is easily shown to be

fY, (lTT lra>e»rY >   -------- T“ ------ (1)
Yl T r<ra) (■fTa

where

ttt  = . t t x + . . . +  Trr  =  ( t t j - y )  + . . . +  ( l y - y )  +  r y

is the sum of r identically distributed r.vs. with p.d.f. defined by 

A5.4(l). This result is derived using the convolution property of gamma 

distributions with identical scale parameters and location parameters of
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zero (Raiffa and Schlaifer 1961, p. 225). A linear transformation is 

utilized before and after the application of the convolution property.

Equation (1) is conditional dependent on a, 8 and r. Using the 

prior or posterior forms of the p.d.f. for a,B given by A5.4(4) through 

A5.4(10) it follows that

f (ttt | r) =
00

fYi(irT|ra,3,ry)f,^(B|c'a,d') (2)

• f(a|a',b',c',d') dB da

While the parameters are destinated with prime notation the results are, 

of course, applicable to both-prior and posterior p.d.fs.

It is easily shown (see Raiffa and Schlaifer 1961, pp. 221, 279) 

that (2) reduces to

f (tt | r)T

where

fi32('nT~rYlra’c"0t,d̂ f(a|a"»b",c',0 da (3)

fic ( y v >  - M*)c'a  (V rY)ra~ w)
B(ra,c'a) (ly.rY* n  < r + O o  

Substituting the p.d.f. for f(a) given by A5.4(5) equation (3) becomes

.ra-i
f ( i r j r )  = -  da (5) 

b (r+c )“I r(ra)T(a) (fy-ry-kT)

Using Stirling's expansion A5.4(ll), equation (5) can be expressed as
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ffrrjr) =
,-x

I r+c
â (TrT-ry):

(7TT-ry+d')r+C

a

exp{[(b'-0+(r+0log(r+c')«r log r] a + [cM>']a log a + [^-]loga

+ Ik=l
(~1} Bk . - , 1^2k-1^
2k(2k-l) ( V } - b - )

•, 2k-1
«5> 1 d“ (6)

Note that in a numerical evaluation with fixed r and all the [...] 

terms are constant.

Equation (5) summarizes the marginal uncertainty in the aggregate 

size of r errors given a gamma error generating process and a natural 

conjugate prior/posterior analysis. Note that when a is known or dis­

cretely estimated (5) can be replaced by the more tractable inverted beta 

2 distribution given by (4).

A5.5.2 The Unconditional or Marginal 
Distribution

Given a probability mass function for r, the unconditional (on r) 

total error distribution can be determined from

f(7rT ) = I f(r)f(7rjr) (7)
r=0

where f(ir,j,|r) is defined by (5) or the series expansion (6).

Equation (7) can be applied whenever the uncertainty in r is the 

result of a Poisson process with known intensity X. For this case it 

follows from A5.3(l) that*

*Moments for this case can be found by differentiating the char­
acteristic function of the compound Poisson distribution (Ross 1970, p. 
23). Accordingly, (j)uT'(t) = expCXxO^ir^)-!)} where <j%(t) is the well 
known characteristic function of A5.4(l).
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f(r) - f (r|AX) = e"Xx(AX)r/r! (8)

Similarly, when a Poisson sample is taken from a Poisson process, as 

discussed in paragraph A5.3.4, (7) can be directly applied using A5.3(8).

The discrete, integer domain, of r in (7) is incompatible with 

the continuous p.d.f. f(A) for error intensity developed in paragraph 

A5.3.3. This p.d.f. arises as a result of a Poisson approximation to 

the likelihood function when sampling an existing population. The re­

quired p.d.f. f(r) of (7) could be determined for this case by splitting 

up f(A) into a mass function for each integer value of r. However, 

since f(A) is a continuous approximation to a discrete process, it also 

seems appropriate to approximate the discrete values of r in f(u^|r) by

a continuous function. Thus, for a population of N elements or N /'NP P u
units it is assumed that 

N
r - x /  (9)

u

Using (5), (9) and A5.3(7) it follows that the total error dis­

tribution for sampling an existing population is
00

f(irT) « j f d r j A ^ f ^ U l r ' . O d A
o
00

I N= I f (trT |r) f^i (r |r'*,|p t ̂  )dr (10)

where r, the dummy variable of integration in (10) resulting from the
N

change of variable r = A ^  , is no longer confined to integer values.
u

The symbolic notation of (10) masks the embedded double integra­

tion over both a and r. Thus, the calculation of a cumulative
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probability requires triple integration. While not a particularly 

attractive possibility, numerical computer procedures are available for 

evaluating such multiple integrals. The dimensionality of this integra­

tion is reduced by one when a is known or discretely estimated, and con­

sequently f(Tr,j,|r) is the inverted beta 2 p.d.f. defined by (4).

Equation (10) corresponds to the beta-normal p.d.f. of Felix and

Grimlund (1977). However, unlike the beta-normal p.d.f., analytical ex­

pressions for the moments of (10) cannot be found by switching the order

of integration. Thus, it is not possible to derive an approximation 

based upon moments as was developed for the beta-normal p.d.f. While 

these observations may not be particularly significant when a single 

solution is desired, they may seriously limit the cost effectiveness of 

the Poisson-gamma model when extensive sensitivity is required. Addi­

tional development of the model, or technological innovations in compu­

tation may, of course, temper these observations.
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